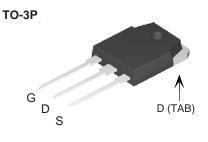
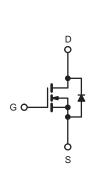


RoHS

FQA7N80C_F109-VB Datasheet N-Channel 900V (D-S) Super Junction Power MOSFET


PRODUCT SUMMARY						
V _{DS} (V) at T _J max.	900					
R _{DS(on)} at 25 °C (Ω)	$V_{GS} = 10 V$	0.75				
Q _g max. (nC)	20					
Q _{gs} (nC)	2.4					
Q _{gd} (nC)	11					
Configuration	Single					


FEATURES

- Low figure-of-merit (FOM) Ron x Qa
- Low input capacitance (Ciss)
- · Reduced switching and conduction losses
- Ultra low gate charge (Q_q)
- Avalanche energy rated (UIS)

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS ($T_C = 25 \text{ °C}$, unless otherwise noted)								
PARAMETER			SYMBOL	LIMIT	UNIT			
Drain-Source Voltage			V _{DS}	900	N			
Gate-Source Voltage			V _{GS}	± 30	V			
Continuous Drain Current (T _J = 150 °C)	V at 10 V	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$ $T_{\rm C} = 100 \ ^{\circ}{\rm C}$		9				
	V _{GS} at 10 V	T _C = 100 °C	ID	7.3	A			
Pulsed Drain Current ^a			I _{DM}	28				
Linear Derating Factor				1.89	W/°C			
Single Pulse Avalanche Energy ^b			E _{AS}	86	mJ			
Maximum Power Dissipation			PD	109	W			
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +150	°C			
Drain-Source Voltage Slope	T _J = 125 °C		dV/dt	50	V/ns			
Reverse Diode dV/dt ^d			av/at	3.2	v/ns			
Soldering Recommendations (Peak Temperature) ^c	for 10 s			300	°C			

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature. b. $V_{DD} = 50$ V, starting T_J = 25 °C, L = 28.2 mH, R_g = 25 Ω , I_{AS} = 3.5 A.

FQA7N80C_F109-VB

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	THERMAL RESISTANCE RATI	NGS							
Maximum Junction-to-Case (Drain) R _{ILOC} - 0.7 "C/W SPECIFICATIONS (T_J = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS Min. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage V_{DS} $V_{CS} = 0$, $V_1 = 250 \mu A$ 900 - - V/V Gate-Source Dreakdown Voltage V_{DS} $V_{CS} = 0$, $V_1 = 250 \mu A$ 20 - 4 V/V Gate-Source Dreakdown Voltage V_{DS} $V_{DS} = 0$, $V_{SS} = 520 \mu A$ 2 - 4 V/V Gate-Source Lakage I_{QSS} $V_{CS} = 0$, $V_{CS} = 0$ - - ±100 nA Zero Gate Voltage Drain Current I_{DSS} $V_{OS} = 0$, $V_{CS} = 0$, $V_{CS} = 0$ - 10 - 0.75 - 10 Drain-Source On-State Resistance $P_{OS(en)}$ $V_{OS} = 0$, $V_{CS} = 0$, $V_{CS} = 0$ - 14 - - 26 - 14 - - 14 - - 266 - - <th>PARAMETER</th> <th>SYMBOL</th> <th colspan="2">TYP. MAX.</th> <th></th> <th colspan="3">UNIT</th>	PARAMETER	SYMBOL	TYP. MAX.			UNIT			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Ambient	R _{thJA}	- 72						
$\begin{array}{ c c c c c } \hline PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	Maximum Junction-to-Case (Drain)	R _{thJC}						°C/W	
$\begin{array}{ c c c c c } \hline PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$		•	•	•					
Static VDS VGS = 0 V, Ig = 250 µA 900 - - V Orain-Source Breakdown Voltage V_{DS} Reference to 25 °C, Ig = 1 mA - 0.65 - V/°C Gate-Source Threshold Voltage (N) $V_{QS}(m)$ $V_{DS} = V_{QS}$, Ig = 250 µA 2 - 4 V Gate-Source Leakage I_{QSS} $V_{DS} = 20 V$ - - ± 100 PA Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = 900 V, V_{GS} = 0 V$ - - 1 μA Drain-Source On-State Resistance $R_{DS(m)}$ $V_{DS} = 00 V, V_{GS} = 0 V$ - - 10 μA Forward Transconductance g_{1s} $V_{DS} = 10 V$ $I_D = 6 A$ - 19 - S Dynamic Input Capacitance C_{cass} $V_{DS} = 0 V, V_{DS} = 0 V$ - 373 - - 46 - 19 - 82 - 14 - PF PE $10 \pm 0 \times 0, V_{DS} = 0 V$ $V_{DS} = 0 V, V_{DS} = 0 V$ $V_{DS} = 0 \times 0, $	SPECIFICATIONS ($T_J = 25 \ ^{\circ}C$, u	Inless otherwi	se noted)						
$\begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage V_{DS} & $V_{QS} = 0 V, $l_{D} = 250 μA & 900 - $ & $-$ & V \\ \hline V_{DS} Temperature Coefficient $\Delta V_{DS} T_J$ & Reference to 25 °C, $l_{D} = 1 mA $ & $-$ & 0.65 & $-$ & V^{*C} \\ \hline Gate-Source Threshold Voltage (N) $V_{QS}(m)$ & $V_{DS}, $l_{D} = 250 μA & 2 & $-$ & 4 & V \\ \hline Gate-Source Leakage l_{QS} & $V_{QS} = 2.0 V$ & $-$ & $-$ & $\pm 1.0 μA \\ \hline V_{QS} = $\pm 20 V$ & $-$ & $-$ & $\pm 1.1 μA \\ \hline V_{QS} = $\pm 30 V$ & $-$ & $-$ & $\pm 1.1 μA \\ \hline V_{QS} = $\pm 20 V$ & $V_{QS} = 0 V$, $V_{QS} = 0 V$ & $-$ & $-$ & 10 μA \\ \hline Drain-Source On-State Resistance $P_{DS}(m)$ & $V_{DS} = 60 V$, $V_{QS} = 0 V$, $T_{J} = 125 °C$ & $-$ & $-$ & 10 μA \\ \hline Drain-Source On-State Resistance $P_{DS}(m)$ & $V_{DS} = 30 V$, $l_{D} = 6 A$ & $-$ & 0.75 & $-$ Ω \\ \hline Drain-Source On-State Resistance $P_{DS}(m)$ & $V_{DS} = 30 V$, $l_{D} = 6 A$ & $-$ & 0.75 & $-$ Ω \\ \hline Drain-Source On-State Resistance $P_{CS}(m)$ & $V_{DS} = 100 V$, $l_{D} = 6 A$ & $-$ & 0.75 & $-$ Ω \\ \hline Drain-Source On-State Resistance C_{ras} & $V_{DS} = 100 V$, $l_{D} = 6 A$ & $-$ & 0.75 & $-$ Ω \\ \hline Reverse Transfer Capacitance C_{cas} & $V_{DS} = 100 V$, $l_{D} = 6 A$ & $-$ & 0.75 & $-$ Ω \\ \hline Reverse Transfer Capacitance, C_{ras} & $V_{DS} = 0 V$, $V_{CS} = 0 V$ \\ \hline PF \\ \hline Total Gate Charge Q_{gs} \\ Gate-Drain Charge Q_{gs} \\ Gate-Drain Charge Q_{gs} \\ Gate-Drain Charge Q_{gs} \\ Gate-Drain Charge Q_{gs} \\ Fall Time t_{10} \\ Fall Time t_{10} \\ Fall Time t_{1} \\ Gate Input Resistance R_{g} $f = 1 MHz$, open drain$ $-$ $ 3.5 $-$ Ω \\ \hline \ Drain-Source Body Diode Characteristics $V_{CS} = 0 V$ \\ \hline \ Dial P = 0 Riverse Recovery Time t_{1} \\ \hline \ Proverse Recovery Charge Q_{SD} \\ \hline \ Dial de Forward Voltage V_{SD} V_{SD} $V_{SD} = C_{1} $V_{SD} = C_{1} $V_{SD} = C_{1} V_{SD} $-$ C_{1} T_{1} $V_{CS} = C_{1} $V_{SD} = C_{1} $V_{SD} = C_{1} V_{SD} $V_{SD} = C_{1} V_{SD} $V_{SD} = C_{1} V_{SD} $V_{SD} = C_{1} $V_{$	PARAMETER	SYMBOL	TES	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static						•	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} :	= 0 V, I _D =	250 µA	900	-	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C,	I _D = 1 mA	-	0.65	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage (N)	V _{GS(th)}				2	-	4	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_	$V_{GS} = \pm 20 V$		V	-	-	± 100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}				-	-	± 1	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						-	-	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}					-	10	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance	R _{DS(on)}				-	0.75	-	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance		V _{DS}	= 30 V, I _D	= 6 A	-	19	-	S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic						•	•	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input Capacitance	C _{iss}	V _{DS} = 100 V,		-	373	-	pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}			-	26	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance				-	14	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 7 00	C _{o(er)}	V_{DS} = 0 V to 520 V, V_{GS} = 0 V		-	46	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{o(tr)}			-	64	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge	Qg	$V_{GS} = 10 \text{ V}$ $I_D = 6 \text{ A}, V_{DS} = 520 \text{ V}$			-	26		nC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge	Q _{gs}			A, V _{DS} = 520 V	-	2.1	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge	Q _{gd}				-	2.8	-	
Turn-Off Delay Time $t_{d(off)}$ $V_{DD} = 620$ V, $I_D = 6$ A, $V_{GS} = 10$ V, $R_g = 9.1 \Omega$ $ 71$ $ 71$ $ 71$ $ 71$ $ 71$ $ 71$ $ 71$ $ 71$ $ 411$ $ 71$ $ 411$ $ 71$ $ 411$ $ 71$ $ 411$ $ 71$ $ 411$ $ 71$ $ 411$ $ 71$ $ 411$ $ 71$ $ 411$ $ 71$ <t< td=""><td>Turn-On Delay Time</td><td>t_{d(on)}</td><td colspan="2" rowspan="4"></td><td>-</td><td>26</td><td>-</td><td rowspan="4">ns</td></t<>	Turn-On Delay Time	t _{d(on)}			-	26	-	ns	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	t _r			-	55.7	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}			-	71	-		
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse $p - n$ junction diode-7APulsed Diode Forward CurrentIsMIsMT_J = 25 °C, I_S = 6 A, V_{GS} = 0 V1.8Diode Forward VoltageV_{SDT_J = 25 °C, I_S = 6 A, V_{GS} = 0 V1.4VReverse Recovery TimetrrT_J = 25 °C, I_F = I_S = 6 A, dl/dt = 100 A/µs, V_R = 400 V-2.4-µC	Fall Time	t _f			-	41	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Input Resistance	R _g	f = 1 MHz, open drain		-	3.5	-	Ω	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Body Diode Characteristi	cs							
Pulsed Diode Forward CurrentIsmIntegral reverse p - n junction diode18Diode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 6 \ A$, $V_{GS} = 0 \ V$ 1.4VReverse Recovery Time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 6 \ A$, dl/dt = 100 A/µs, $V_R = 400 \ V$ -1.4V	Continuous Source-Drain Diode Current	IS	showing the integral reverse		-	-	7	A	
$ \begin{array}{c c} \mbox{Reverse Recovery Time} & t_{rr} & & \\ \mbox{Reverse Recovery Charge} & Q_{rr} & & T_J = 25 \ ^\circ C, \ I_F = I_S = 6 \ A, \\ \ dI/dt = 100 \ A/\mu s, \ V_R = 400 \ V & & \\ \end{array} \\ \begin{array}{c c} - & 192 & - & ns \\ \hline - & 2.4 & - & \mu C \\ \end{array} $	Pulsed Diode Forward Current	I _{SM}			-	-	18		
$ \begin{array}{c c} \mbox{Reverse Recovery Time} & t_{rr} & & \\ \mbox{Reverse Recovery Charge} & Q_{rr} & & T_J = 25 \ ^\circ C, \ I_F = I_S = 6 \ A, \\ \ dI/dt = 100 \ A/\mu s, \ V_R = 400 \ V & & \\ \end{array} \\ \begin{array}{c c} - & 192 & - & ns \\ \hline - & 2.4 & - & \mu C \\ \end{array} $	Diode Forward Voltage	V _{SD}	$T_J = 25 \text{ °C}, I_S = 6 \text{ A}, V_{GS} = 0 \text{ V}$		-	-	1.4	V	
Reverse Recovery Charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 6 \ A$, $dI/dt = 100 \ A/\mu s$, $V_R = 400 \ V$ -2.4- μC					-	192	-	ns	
	Reverse Recovery Charge				-	2.4	-	μC	
	, ,				-	11	-	-	

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} . b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} .

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

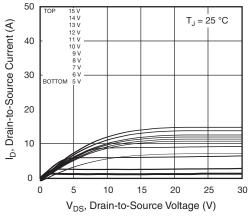


Fig. 1 - Typical Output Characteristics

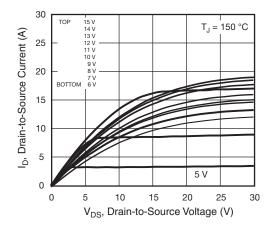


Fig. 2 - Typical Output Characteristics

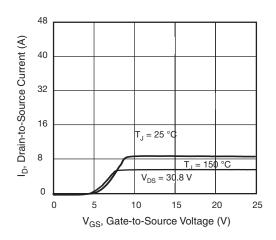


Fig. 3 - Typical Transfer Characteristics

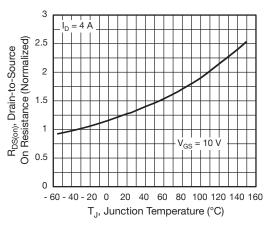


Fig. 4 - Normalized On-Resistance vs. Temperature

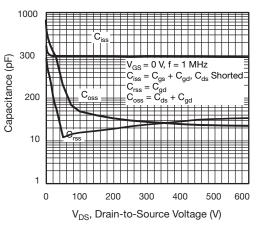


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

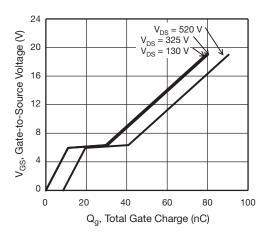


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

FQA7N80C_F109-VB

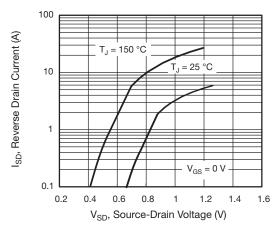


Fig. 7 - Typical Source-Drain Diode Forward Voltage

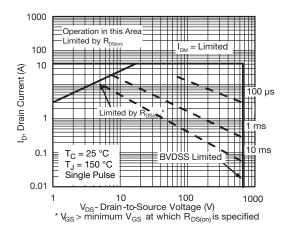


Fig. 8 - Maximum Safe Operating Area

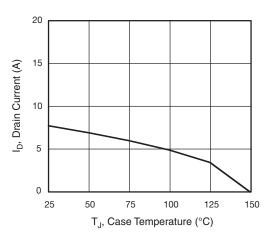


Fig. 9 - Maximum Drain Current vs. Case Temperature

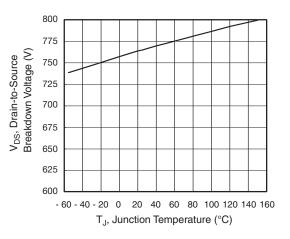


Fig. 10 - Temperature vs. Drain-to-Source Voltage

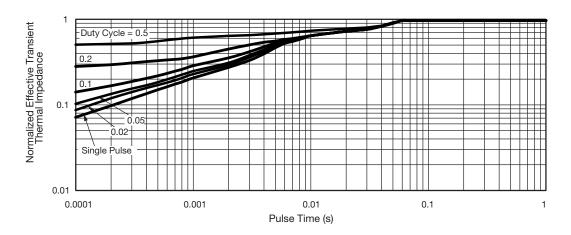


Fig. 11 - Normalized Thermal Transient Impedance, Junction-to-Case

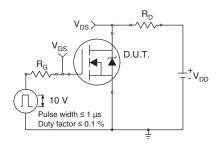


Fig. 12 - Switching Time Test Circuit

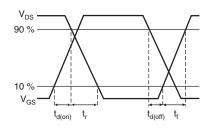


Fig. 13 - Switching Time Waveforms

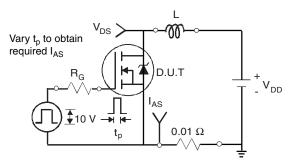


Fig. 14 - Unclamped Inductive Test Circuit

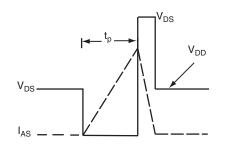


Fig. 15 - Unclamped Inductive Waveforms

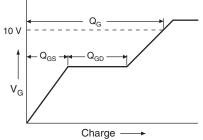


Fig. 16 - Basic Gate Charge Waveform

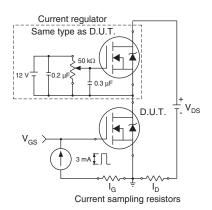
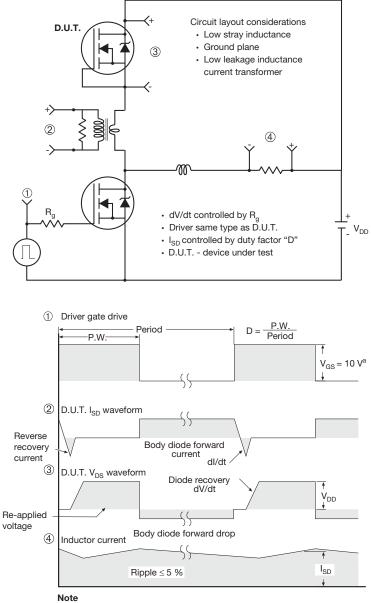



Fig. 17 - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices

Fig. 18 - For N-Channel

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.