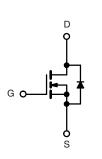



COMPLIANT

## IRLW640-VB Datasheet N-Channel 200 V (D-S) 175 °C MOSFET

| PRODUCT SUMMARY     |                                  |                    |  |  |
|---------------------|----------------------------------|--------------------|--|--|
| V <sub>DS</sub> (V) | R <sub>DS(on)</sub> (Ω)          | I <sub>D</sub> (A) |  |  |
| 200                 | 0.048 at V <sub>GS</sub> = 10 V  | 40                 |  |  |
|                     | 0.060 at V <sub>GS</sub> = 6.5 V | 35                 |  |  |




#### TO-263

#### FEATURES

- Trench Power MOSFET
- 175 °C Junction Temperature
- Low Thermal Resistance Package
- PWM Optimized for Fast Switching
- Compliant to RoHS Directive 2002/95/EC

#### **APPLICATIONS**

Isolated DC/DC Converters
 Primary-Side Switch



N-Channel MOSFET

| ABSOLUTE MAXIMUM RATIN                              | <b>GS</b> (T <sub>C</sub> = 25 °C, unless c | otherwise noted)                  |                  |    |  |
|-----------------------------------------------------|---------------------------------------------|-----------------------------------|------------------|----|--|
| Parameter                                           | Symbol                                      | Limit                             | Unit             |    |  |
| Drain-Source Voltage                                |                                             | V <sub>DS</sub>                   | 200              | V  |  |
| Gate-Source Voltage                                 | V <sub>GS</sub>                             | ± 20                              | 20 V             |    |  |
| Continuous Drain Current ( $T_1 = 175 \text{ °C}$ ) | T <sub>C</sub> = 25 °C                      | 1-                                | 40               |    |  |
|                                                     | T <sub>C</sub> = 125 °C                     | I <sub>D</sub>                    | 25               |    |  |
| Pulsed Drain Current                                | I <sub>DM</sub>                             | 80                                | A                |    |  |
| Avalanche Current                                   | I <sub>AR</sub>                             | 20                                |                  |    |  |
| Repetitive Avalanche Energy <sup>a</sup>            | L = 0.1 mH                                  | E <sub>AR</sub>                   | 16.2             | mJ |  |
| Maximum Power Dissipation <sup>a</sup>              | T <sub>C</sub> = 25 °C                      | P                                 | 200 <sup>b</sup> | w  |  |
|                                                     | $T_A = 25 \ ^{\circ}C^{c}$                  |                                   | 4.5              |    |  |
| Operating Junction and Storage Temperature Range    |                                             | T <sub>J</sub> , T <sub>stg</sub> | - 55 to 175      | °C |  |

| THERMAL RESISTANCE RATINGS |                                 |                   |       |      |  |
|----------------------------|---------------------------------|-------------------|-------|------|--|
| Parameter                  |                                 | Symbol            | Limit | Unit |  |
| Junction-to-Ambient        | PCB Mount (TO-263) <sup>c</sup> | R <sub>thJA</sub> | 40    | °C/W |  |
| Junction-to-Case (Drain)   |                                 | R <sub>thJC</sub> | 1     | 0/11 |  |

Notes:

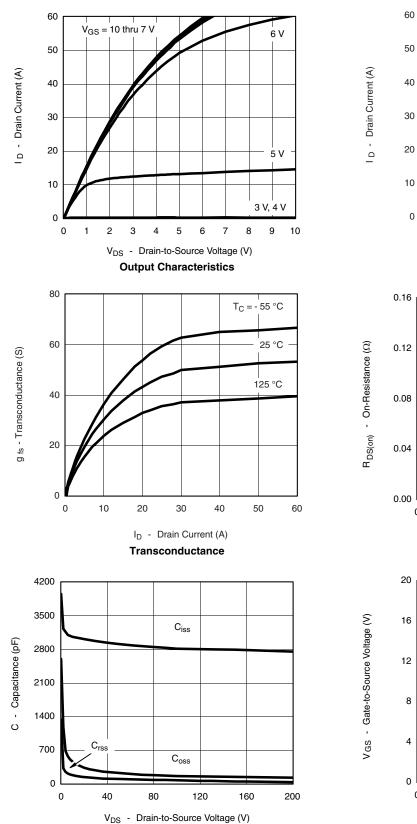
a. Duty cycle  $\leq$  1 %.

b. See SOA curve for voltage derating.

c. When mounted on 1" square PCB (FR-4 material).

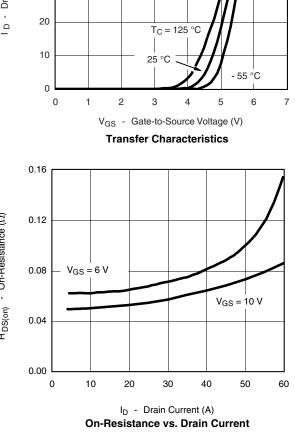
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>SPECIFICATIONS</b> (T <sub>J</sub> = 25 °C, unless otherwise noted) |                      |                                                                                                       |       |       |       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------|-------|-------|-------|------|
| $\begin{array}{ c c c c c c } \hline \mbox{Drain-Source Breakdown Voltage} & V_{DS} & V_{DS} = V_{GS} = 0 \ V, \ V_{DS} = 250 \ \mu A & 2 & 4 & V \\ \hline \mbox{Gate-Threshold Voltage} & V_{GS(th)} & V_{DS} = V_{GS} \ v_{D} = 250 \ \mu A & 2 & 4 & V \\ \hline \mbox{Gate-Body Leakage} & \ & \ & \ & \ & \ & \ & \ & \ & \ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Parameter                                                              | Symbol               | Test Conditions                                                                                       | Min . | Тур.  | Max.  | Unit |
| Gate-Threshold Voltage         VGS(th)         VDS = VGS, ID = 250 µA         2         4         V           Gate-Body Leakage         IGSS         VDS = 0 V, VGS = ± 20 V         ± 100         nA           Zero Gate Voltage Drain Current         IDSS         VDS = 160 V, VGS = 0 V         1         µA           Zero Gate Voltage Drain Current         IDSS         VDS = 160 V, VGS = 0 V, TJ = 125 °C         50         µA           On-State Drain Current <sup>a</sup> ID(on)         VDS = 160 V, VGS = 0 V, TJ = 125 °C         0.048          A           Drain-Source On-State Resistance <sup>a</sup> PDS(on)         VGS = 10 V, ID = 20 A, TJ = 125 °C         0.150         A           Oryces = 0 V, VDS = 15 V, VDS = 10 V, ID = 20 A, TJ = 125 °C         0.180         A         A           Orges = 10 V, ID = 20 A, TJ = 125 °C         0.180         A         A         A           Drain-Source on State Resistance         Prose = 15 V, ID = 30 A         15         S         S           Dynamic <sup>b</sup> NDS = 15 V, VDS = 25 V, I = 1 MHz         300         PF         PF           Reverse Transfer Capacitance         Crass         VDS = 10 V, VDS = 25 V, I = 1 MHz         35         C           Gate-Source Charge <sup>c</sup> Qg         Gate-Soure Charge <sup>c</sup> Qg         35 <td>Static</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Static                                                                 | •                    |                                                                                                       |       |       |       |      |
| $ \begin{array}{c c c c c c } \hline \mbox{Gate-Threshold Voltage} & V_{GS(th)} & V_{DS} = V_{GS, 1_D} = 250 \ \mu A & 2 & 4 & 1 \\ \hline \mbox{Gate-Bady Leakage} & l_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = 20 \ V & 1 & 1 & 1 \\ \hline \mbox{V} & V_{DS} = 160 \ V, \ V_{GS} = 0 \ V & 1_{g} = 125 \ ^{\circ}C & 0 & 50 & 1 \\ \hline \mbox{V} & V_{DS} = 160 \ V, \ V_{GS} = 0 \ V, \ T_{J} = 125 \ ^{\circ}C & 0 & 250 & 0 \\ \hline \mbox{V} & V_{DS} = 160 \ V, \ V_{GS} = 0 \ V, \ T_{J} = 125 \ ^{\circ}C & 0 & 250 & 0 \\ \hline \mbox{V} & V_{DS} = 160 \ V, \ V_{GS} = 0 \ V, \ T_{J} = 125 \ ^{\circ}C & 0 & 0.048 & 0 \\ \hline \mbox{V} & V_{DS} = 160 \ V, \ V_{GS} = 0 \ V, \ T_{J} = 125 \ ^{\circ}C & 0 & 0.048 & 0 \\ \hline \mbox{V} & V_{DS} = 100 \ V, \ V_{DS} = 10 \ V, \ V_{DS} =$                                                                                                                                                                                                                                                                               | Drain-Source Breakdown Voltage                                         | V <sub>DS</sub>      | $V_{GS} = 0 V, I_D = 250 \mu A$                                                                       | 200   |       |       | v    |
| $ \begin{array}{ c c c c c c } \hline V_{DS} = 160 \ V, V_{GS} = 0 \ V \\ \hline V_{DS} = 160 \ V, V_{GS} = 0 \ V, \ J_{2} = 125 \ C \\ \hline V_{DS} = 160 \ V, V_{GS} = 0 \ V, \ J_{2} = 125 \ C \\ \hline V_{DS} = 160 \ V, V_{GS} = 0 \ V, \ J_{2} = 125 \ C \\ \hline V_{DS} = 160 \ V, V_{GS} = 0 \ V, \ J_{2} = 125 \ C \\ \hline V_{DS} = 160 \ V, V_{GS} = 0 \ V, \ J_{2} = 125 \ C \\ \hline V_{DS} = 160 \ V, V_{GS} = 10 \ V, \ D_{S} = 10 \ V$                                                                                                                                                                                                                                                                                                           | Gate-Threshold Voltage                                                 | V <sub>GS(th)</sub>  | $V_{DS} = V_{GS}, I_D = 250 \ \mu A$                                                                  | 2     |       | 4     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gate-Body Leakage                                                      | I <sub>GSS</sub>     | $V_{DS} = 0 V, V_{GS} = \pm 20 V$                                                                     |       |       | ± 100 | nA   |
| $\begin{tabular}{ c c c c c } \hline V_{DS} = 160 \ V, V_{GS} = 0 \ V, T_J = 175 \ ^{\circ} C & 250 \\ \hline V_{DS} = 160 \ V, V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 0.048 \\ \hline V_{GS} = 10 \ V, I_D = 20 \ A & 15 \\ \hline Drain-Source on State Resistance \ C_{ISS} \\ \hline Dynamic^{D} \\ \hline Drain-Source Charge^{C} \ C_{Qg} \\ \hline Coulput Capacitance \ C_{ISS} \\ \hline Coulput Capacitance \ C_{ISS} \\ \hline Output Capacitance \ C_{ISS} \\ \hline Coulput Capacitance \ C_{ISS} \\ \hline Cotal Gate -Drain Charge^{C} \ C_{Qg} \\ \hline Gate-Drain Charge^{C} \ C_{Qg} \\ \hline Gate-Drain Charge^{C} \ C_{Qg} \\ \hline Cater Charge^{C}$ |                                                                        |                      | $V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$                                                        |       |       | 1     |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zero Gate Voltage Drain Current                                        | I <sub>DSS</sub>     | $V_{DS}$ = 160 V, $V_{GS}$ = 0 V, $T_{J}$ = 125 °C                                                    |       |       | 50    | μA   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                        |                      | $V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 175 ^{\circ}\text{C}$                          |       |       | 250   |      |
| $ \begin{array}{ c c c c c c c } \mbox{Drain-Source On-State Resistance} & $P_{DS(on)}$ & $V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 125 \ ^{\circ}{\rm C} & $0.150 & $1$$ \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 175 \ ^{\circ}{\rm C} & $0.160 & $1$$ \\ \hline V_{GS} = 10 \ V, \ I_{D} = 20 \ A, \ T_{J} = 175 \ ^{\circ}{\rm C} & $0.160 & $1$$ \\ \hline V_{GS} = 6.5 \ V, \ I_{D} = 15 \ A & $0.060 & $1$$ \\ \hline V_{GS} = 6.5 \ V, \ I_{D} = 30 \ A & $15 & $1$$ & $5$$ \\ \hline \end{tabular} & $$Dymaticb$ & $$$$ \\ \hline \end{tabular} & $$$$$ \\ \hline \end{tabular} & $$$$ \\ \hline \end{tabular} & $$$$$ \\ \hline \end{tabular} & $$$$ \\ \hline \end{tabular} & $$$$$ \\ \hline \end{tabular} & $$$$ \\ \hline \end{tabular} & $$$$$$$$$$$$$$$ \\ \hline \end{tabular} & $$$$$$$$$$$$$$$$$$$$ \\ \hline \end{tabular} & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                               | On-State Drain Current <sup>a</sup>                                    | I <sub>D(on)</sub>   | $V_{DS} \ge 15 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$                                              | 60    |       |       | А    |
| $ \begin{array}{ c c c c c c c c c } \hline \mbox{Hom} Gamma Gam$                                                                                                                                                                                                                                                                                                                                               |                                                                        |                      | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 20 A                                                         |       | 0.048 |       | Ω    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drain-Source On-State Resistance <sup>a</sup>                          | В                    | $V_{GS}$ = 10 V, I <sub>D</sub> = 20 A, T <sub>J</sub> = 125 °C                                       |       | 0.150 |       |      |
| $ \begin{array}{c c c c c c c } \hline Forward Transconductance^a & g_{fs} & V_{DS} = 15 \ V, \ I_{D} = 30 \ A & 15 & & & S \\ \hline \mbox{Dynamic}^b & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                        | DS(on)               | $V_{GS}$ = 10 V, I <sub>D</sub> = 20 A, T <sub>J</sub> = 175 °C                                       |       | 0.180 |       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drain-Source on State Resistance                                       |                      | V <sub>GS</sub> = 6.5 V, I <sub>D</sub> = 15 A                                                        |       | 0.060 |       |      |
| $ \begin{array}{ c c c c c c } \mbox{Input Capacitance} & C_{1SS} & V_{GS} = 0 \ V, \ V_{DS} = 25 \ V, \ f = 1 \ MHz & 300 & pF \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Forward Transconductance <sup>a</sup>                                  | 9 <sub>fs</sub>      | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 30 A                                                         | 15    |       |       | S    |
| $ \begin{array}{c c c c c c c c c } \hline \mbox{Output Capacitance} & \mbox{C}_{OSS} & \mbox{V}_{GS} = 0 \ V, \ V_{DS} = 25 \ V, \ f = 1 \ MHz & \hline \mbox{300} & \mbox{med} & \mbox{pF} \\ \hline \mbox{Reverse Transfer Capacitance} & \mbox{C}_{rss} & \mbox{Q}_{g} & \mbox{V}_{DS} = 10 \ V, \ V_{DS} = 10$                                                                                                                                                                                                                                                                                                                                    | Dynamic <sup>b</sup>                                                   | •                    | •                                                                                                     | •     | •     |       |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Input Capacitance                                                      | C <sub>iss</sub>     |                                                                                                       |       | 2820  |       | pF   |
| $ \begin{array}{c c c c c c c c } \hline Total Gate Charge^{c} & Q_{g} \\ \hline Gate-Source Charge^{c} & Q_{gd} \\ \hline Gate-Source Charge^{c} & Q_{gd} \\ \hline Gate-Drain Charge^{c} & Q_{gd} \\ \hline Gate Resistance & R_{G} \\ \hline Turn-On Delay Time^{c} & t_{d(on)} \\ \hline Rise Time^{c} & t_{r} \\ \hline Turn-Off Delay Time^{c} & t_{d(off)} \\ \hline Fall Time^{c} & t_{f} \\ \hline \hline Source-Drain Diode Ratings and Characteristics (T_{C} = 25 °C)^{b} \\ \hline Continuous Current & I_{S} \\ \hline Pulsed Current & I_{SM} \\ \hline Forward Voltage^{a} & V_{SD} & I_{F} = 20 \text{ A}, V_{GS} = 0 \text{ V} \\ \hline I_{F} = 50 \text{ A}, dI/dt = 100 \text{ A/}\mu \text{s} \\ \hline I_{F} = 50 \text{ A}, dI/dt = 100 \text{ A/}\mu \text{s} \\ \hline \end{array} \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output Capacitance                                                     | C <sub>oss</sub>     | $V_{GS}$ = 0 V, $V_{DS}$ = 25 V, f = 1 MHz                                                            |       | 300   |       |      |
| Gate-Source Charge <sup>c</sup> $Q_{gs}$ $V_{DS} = 100 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$ 11         nC           Gate-Drain Charge <sup>c</sup> $Q_{gd}$ 14         14         14         14         14         14         14         14         14         14         14         14         14         15         2 $\Omega$ $\Omega$ 11         14         15         25 $\Omega$ $\Omega$ 15         25 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reverse Transfer Capacitance                                           | C <sub>rss</sub>     |                                                                                                       |       | 120   |       |      |
| $ \begin{array}{c c c c c c c } \hline Gate - Drain Charge^{\circ} & Q_{gd} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Gate Charge <sup>c</sup>                                         | Qg                   |                                                                                                       |       | 35    |       | nC   |
| $ \begin{array}{c c c c c c c c c } \hline Gate Resistance & R_G & & 2 & \Omega \\ \hline Turn-On Delay Time^{C} & t_{d(on)} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gate-Source Charge <sup>c</sup>                                        | Q <sub>gs</sub>      | $V_{DS} = 100 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 20 \text{ A}$                                 |       | 11    |       |      |
| $ \begin{array}{c c c c c c c c c } \hline Turn-On \ Delay \ Time^{\circ} & t_{d(on)} \\ \hline Rise \ Time^{\circ} & t_{r} \\ \hline Turn-Off \ Delay \ Time^{\circ} & t_{d(off)} \\ \hline Turn-Off \ Delay \ Time^{\circ} & t_{d(off)} \\ \hline Fall \ Time^{\circ} & t_{f} \\ \hline \end{array} & V_{DD} = 100 \ V, \ R_{L} = 5 \ \Omega \\ \hline l_{D} \cong 20 \ A, \ V_{GEN} = 10 \ V, \ R_{G} = 2.5 \ \Omega \\ \hline \end{array} & \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gate-Drain Charge <sup>c</sup>                                         | Q <sub>gd</sub>      |                                                                                                       |       | 14    |       |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gate Resistance                                                        | R <sub>G</sub>       |                                                                                                       |       | 2     |       | Ω    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turn-On Delay Time <sup>c</sup>                                        | t <sub>d(on)</sub>   |                                                                                                       |       | 15    | 25    |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rise Time <sup>c</sup>                                                 | t <sub>r</sub>       | $V_{DD}$ = 100 V, $R_L$ = 5 $\Omega$                                                                  |       | 35    | 55    | ns   |
| Source-Drain Diode Ratings and Characteristics $(T_C = 25 \ ^{\circ}C)^b$ Continuous CurrentIs40Pulsed CurrentIsM60Forward Voltage <sup>a</sup> V <sub>SD</sub> I <sub>F</sub> = 20 A, V <sub>GS</sub> = 0 V1Reverse Recovery Time $t_{rr}$ 115170nsPeak Reverse Recovery ChargeI <sub>RM(REC)</sub> I <sub>F</sub> = 50 A, dI/dt = 100 A/µs7.512A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Turn-Off Delay Time <sup>c</sup>                                       | t <sub>d(off)</sub>  | $\text{I}_{\text{D}}\cong$ 20 A, $\text{V}_{\text{GEN}}$ = 10 V, $\text{R}_{\text{G}}$ = 2.5 $\Omega$ |       | 40    | 60    |      |
| $\begin{array}{c c c c c c c c c } \hline Continuous Current & I_S & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fall Time <sup>c</sup>                                                 | t <sub>f</sub>       |                                                                                                       |       | 30    | 45    |      |
| Pulsed CurrentI<br>SMI<br>Forward VoltageaAForward VoltageaV<br>SDI<br>F<br>F<br>I<br>F11.5VReverse Recovery Time $t_{rr}$ 115170nsPeak Reverse Recovery ChargeI<br>RM(REC)I<br>F<br>F<br>F<br>I<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F <br< td=""><td>Source-Drain Diode Ratings and Cha</td><td>aracteristics (</td><td><math>T_{\rm C} = 25 \ {}^{\circ}{\rm C})^{\rm b}</math></td><td></td><td></td><td></td><td></td></br<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source-Drain Diode Ratings and Cha                                     | aracteristics (      | $T_{\rm C} = 25 \ {}^{\circ}{\rm C})^{\rm b}$                                                         |       |       |       |      |
| Pulsed Current $I_{SM}$ 60Forward Voltage <sup>a</sup> $V_{SD}$ $I_F = 20 \text{ A}, V_{GS} = 0 \text{ V}$ 11.5 $V$ Reverse Recovery Time $t_{rr}$ 115170nsPeak Reverse Recovery Charge $I_{RM(REC)}$ $I_F = 50 \text{ A}, dI/dt = 100 \text{ A}/\mu s$ 7.512A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Continuous Current                                                     |                      |                                                                                                       |       |       | 40    | ۸    |
| Reverse Recovery Time $t_{rr}$ 115170nsPeak Reverse Recovery Charge $I_{RM(REC)}$ $I_F = 50 \text{ A}, dI/dt = 100 \text{ A}/\mu s$ 7.512A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pulsed Current                                                         | I <sub>SM</sub>      |                                                                                                       |       |       | 60    |      |
| Reverse Recovery Time $t_{rr}$ 115170nsPeak Reverse Recovery Charge $I_{RM(REC)}$ $I_F = 50 \text{ A}, dI/dt = 100 \text{ A}/\mu s$ 7.512A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Forward Voltage <sup>a</sup>                                           | V <sub>SD</sub>      | $I_{F} = 20 \text{ A}, V_{GS} = 0 \text{ V}$                                                          |       | 1     | 1.5   | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reverse Recovery Time                                                  |                      |                                                                                                       |       | 115   | 170   | ns   |
| Reverse Recovery ChargeQμC0.431.02μC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Peak Reverse Recovery Charge                                           | I <sub>RM(REC)</sub> | I <sub>F</sub> = 50 A, dl/dt = 100 A/μs                                                               |       | 7.5   | 12    | А    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reverse Recovery Charge                                                | Q <sub>rr</sub>      |                                                                                                       |       | 0.43  | 1.02  | μC   |

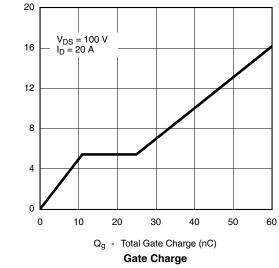
Notes:


a. Pulse test; pulse width  $\leq$  300  $\mu$ s, duty cycle  $\leq$  2 %. b. Guaranteed by design, not subject to production testing.

c. Independent of operating temperature.

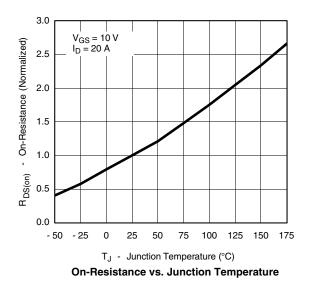
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

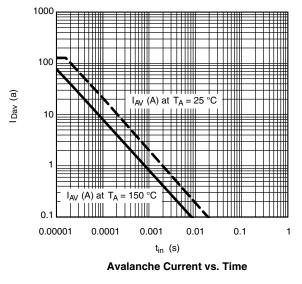

semi Bsemi.com

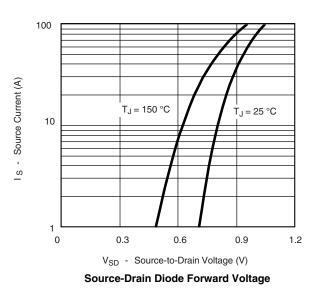


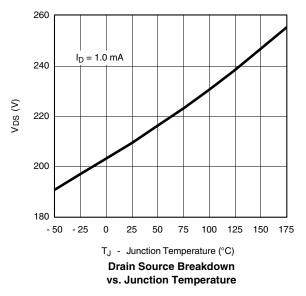



Capacitance


#### TYPICAL CHARACTERISTICS (25 °C unless noted)



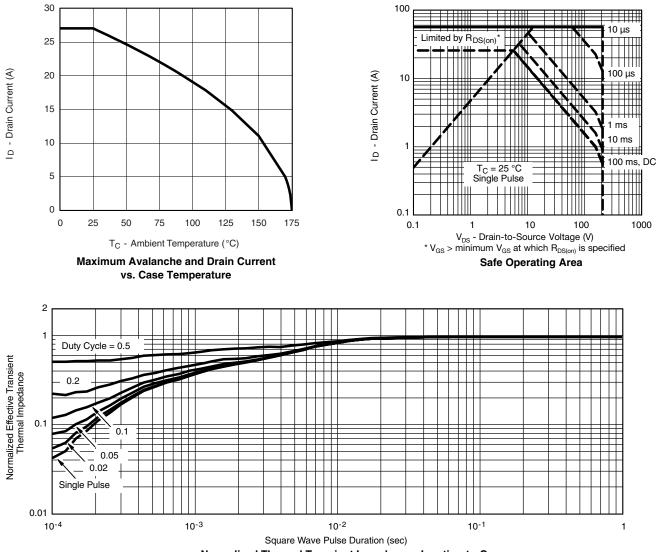




#### TYPICAL CHARACTERISTICS (25 °C unless noted)










### IRLW640-VB



#### THERMAL RATINGS



Normalized Thermal Transient Impedance, Junction-to-Case



# Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

# **Material Category Policy**

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.