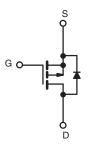


B405-VB Datasheet P-Channel 40 V (D-S) MOSFET

PRODUCT SUMMARY	
V _{DS} (V)	-40
$R_{DS(on)} (\Omega)$ at V_{GS} = -10 V	0.012
$R_{DS(on)}\left(\Omega\right)$ at V_{GS} = -4.5 V	0.015
I _D (A)	-60
Configuration	Single


FEATURES

- Trench power MOSFET
- Package with low thermal resistance
- 100 % $\rm R_g$ and UIS tested

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unles	s otherwise noted	ł)	
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-Source Voltage		V _{DS}	-40	V
Gate-Source Voltage		V _{GS}	± 20	v
Continuous Drain Current	T _C = 25 °C ª	1	-60	
Continuous Drain Current	T _C = 125 °C	Ι _D	-45	
Continuous Source Current (Diode Conduction)	a	۱ _S	-60	А
Pulsed Drain Current ^b		I _{DM}	-230	
Single Pulse Avalanche Current	1 0.1 ml	I _{AS}	-45	
Single Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	80	mJ
	T _A = 25 °C		3.5	
Maximum Power Dissipation ^b	T _C = 25 °C	PD	166	W
	T _C = 125 °C		65	
Operating Junction and Storage Temperature Ra	ange	TJ, T _{stg}	-55 to +175	°C

THERMAL RESISTANCE RATINGS				
PARAMETER		SYMBOL	LIMIT	UNIT
Junction-to-Ambient	PCB Mount ^c	R _{thJA}	50	°C/W
Junction-to-Case (Drain)		R _{thJC}	1.1	0/11

Notes

a. Package limited.

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

c. When mounted on 1" square PCB (FR4 material).

d. Parametric verification ongoing.

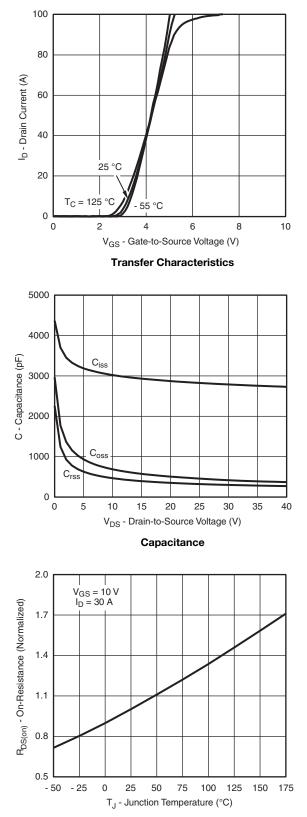
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. Static V_{OS} $V_{OS} = 0$ V, $I_D = -250$ µA -40 - - Gate-Source Dreshold Voltage V_{OS} $V_{OS} = 0$ V, $I_D = -250$ µA -1.5 - - - Gate-Source Leakage I_{OSS} $V_{DS} = -250$ µA -1.5 - - - 100 Zero Gate Voltage Drain Current I_{DSS} $V_{OS} = 0$ V $V_{OS} = -40$ V, $T_J = 125$ °C - - - - - - - - - - - - 100 $V_{OS} = 0$ V $V_{DS} = -40$ V, $T_J = 125$ °C -<	SPECIFICATIONS ($T_C = 25 \ ^{\circ}C_{,s}$, unless otherv	vise noted)					
$ \begin{array}{ c c c c } \hline \mbox{Drain-Source Breakdown Voltage} & V_{DS} & V_{DS} & V_{DS} & -250 \ \mu A & -40 & & \\ \hline \mbox{Gate-Source Threshold Voltage} & V_{DS} & V_{DS} & -250 \ \mu A & -1.5 & & -2.5 \\ \hline \mbox{Gate-Source Leakage} & I_{GSS} & V_{DS} & -0 \ V_{VSS} & -20 \ V & & & +100 \\ \hline \mbox{VGS} & V_{DS} & -40 \ V & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -40 \ V & & & & & \\ \hline \mbox{VGS} & 0 \ V_{DS} & -10 \ V \ V_{DS} & -40 \ V & & & 0.012 & \\ \hline \mbox{VGS} & -10 \ V \ \mbox{Ip} & -50 \ A \ T_1 & & 125 \ C \ & 0.017 & \\ \hline \mbox{VGS} & -10 \ V \ \mbox{Ip} & -50 \ A \ T_1 & & 1. \\ \hline \mbox{VGS} & -10 \ V \ \mbox{Ip} & -50 \ A \ T_1 & & 1.5 \ & 0.015 & \\ \hline \mbox{VGS} & -10 \ V \ \mbox{Ip} & -50 \ A \ T_1 & & 1.5 \ & 0.015 & \\ \hline \mbox{VGS} & -10 \ V \ \mbox{Ip} & -50 \ A \ T_1 & & 1.5 \ & 0.015 \ \\ \hline \mbox{VGS} & -10 \ V \ \mbox{Ip} & -50 \ A \ T_1 & & 1.5 \ & 0.50 \ & 0.$	PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT
$ \begin{array}{ c c c c } \hline \mbox{Gate-Source Threshold Voltage} & V_{GS(m)} & V_{DS} = V_{GS}, \mbox{Ip} = -250 \ \mu\mbox{A} & -1.5 & - & -2.5 \\ \hline \mbox{Gate-Source Leakage} & \mbox{Ip}_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V & - & - & \pm 100 \\ \hline \mbox{V}_{CS} = 0 \ V, \ V_{DS} = -40 \ V, \ U_{D} = -17 \ V & - & - & -150 \\ \hline \mbox{V}_{OS} = 0 \ V, \ V_{DS} = -40 \ V, \ U_{J} = 125 \ ^{\circ}C & - & - & -550 \\ \hline \mbox{V}_{OS} = 0 \ V, \ V_{DS} = -40 \ V, \ U_{J} = 175 \ ^{\circ}C & - & - & -150 \\ \hline \mbox{V}_{OS} = 0 \ V, \ V_{DS} = -40 \ V, \ U_{J} = 175 \ ^{\circ}C & - & - & -150 \\ \hline \mbox{On-State Drain Current}^{a} & \mbox{Ip}_{D(m)} & V_{GS} = -10 \ V & V_{DS} = -50 \ A, \ U_{J} = 125 \ ^{\circ}C & - & 0.012 & - \\ \hline \mbox{V}_{OS} = -10 \ V & \ V_{DS} = -50 \ A, \ U_{J} = 125 \ ^{\circ}C & - & 0.012 & - \\ \hline \mbox{V}_{OS} = -10 \ V & \ I_{D} = -50 \ A, \ U_{J} = 125 \ ^{\circ}C & - & 0.017 & - \\ \hline \mbox{V}_{OS} = -10 \ V & \ I_{D} = -50 \ A, \ U_{J} = 125 \ ^{\circ}C & - & 0.017 & - \\ \hline \mbox{V}_{OS} = -10 \ V & \ I_{D} = -50 \ A, \ U_{J} = 17A \ A & - & 0.015 & - \\ \hline \mbox{V}_{OS} = -10 \ V & \ I_{D} = -50 \ A, \ U_{J} = 17A \ A & - & 0.015 & - \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 & - \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 & - \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 & - \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 & - \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 & - \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 & - \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 & - \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 \ - & \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 \ - & \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 \ - & \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.015 \ - & \\ \hline \mbox{V}_{OS} = -15 \ V, \ I_{D} = -17A \ A & - & 0.508 \ A \ A \ A \ A \ A \ A \ A \ A \ A \ $	Static		-					
$ \begin{array}{c c c c c c } \mbox{Gate-Source Leakage} & I_{GSS} & V_{DS} = 0 V, V_{GS} = \pm 20 V & - & - & \pm 100 \\ \hline V_{GS} = 0 V & V_{DS} = -40 V & - & - & -1 \\ \hline V_{GS} = 0 V & V_{DS} = -40 V, T_{J} = 125 \ ^{\circ}{\rm C} & - & - & - & -50 \\ \hline V_{GS} = 0 V & V_{DS} = -40 V, T_{J} = 125 \ ^{\circ}{\rm C} & - & - & - & -150 \\ \hline V_{GS} = 0 V & V_{DS} = -40 V, T_{J} = 175 \ ^{\circ}{\rm C} & - & - & - & -150 \\ \hline V_{GS} = 0 V & V_{DS} = -40 V, T_{J} = 175 \ ^{\circ}{\rm C} & - & - & - & - & -150 \\ \hline V_{GS} = 0 V & V_{DS} = -40 V, T_{J} = 175 \ ^{\circ}{\rm C} & - & - & - & - & - & - & - & - & - & $	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	= 0 V, I _D = -250 μA	-40	-	-	v
$ \begin{array}{ c c c c c } \mbox{Zero Gate Voltage Drain Current} & I_{DSS} & V_{GS} = 0 & V_{DS} = -40 & V, T_J = 125 \ ^{\circ}C & - & - & -50 \\ \hline V_{GS} = 0 & V_{DS} = -40 & V, T_J = 125 \ ^{\circ}C & - & - & -50 \\ \hline V_{GS} = 0 & V_{DS} = -40 & V, T_J = 175 \ ^{\circ}C & - & - & -150 \\ \hline V_{GS} = 0 & V_{DS} = -40 & V, T_J = 175 \ ^{\circ}C & - & - & -150 \\ \hline V_{GS} = 0 & V_{DS} = -10 & V_{DS} = -50 & -60 & - & - \\ \hline V_{GS} = -10 & V_{DS} = -10 & V_{DS} = -50 & -60 & - & - \\ \hline V_{GS} = -10 & V_{DS} = -10 & V_{DS} = -50 & A, T_J = 125 \ ^{\circ}C & - & 0.017 & - \\ \hline V_{GS} = -10 & V_{DS} = -10 & V_{DS} = -15 \ ^{\circ}V_{DS} = -10 & V_{DS} = -110 \ ^{\circ}V_{DS} = -15 & V_{DS} = -15 \ ^{\circ}V_{DS} = -15 & V_{DS} = -110 \ ^{\circ}V_{DS} = -25 \ ^{\circ}V_{DS} = -11 \ ^{\circ}V_{DS} = -25 \ ^{\circ}V_{DS} = -10 \ ^{\circ}V_{DS} = -25 \ ^{\circ}V_{DS} = -25 \ ^{\circ}V_{DS} = -10 \ ^{\circ}V_{DS} = -25 \ ^{\circ}V_{DS} = -10 \ ^{\circ}V_{DS} = -25 \ ^{\circ}V_{DS} = -20 \ ^{\circ}V_{DS} = -20 \ ^{\circ}V_{DS} = -20 \ ^{\circ}V_{DS} = -50 \ ^{\circ}V_{DS} =$	Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	V _{GS} , I _D = -250 μA	-1.5	-	-2.5	v
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate-Source Leakage	I _{GSS}	V _{DS} =	$0 \text{ V}, \text{V}_{\text{GS}} = \pm 20 \text{ V}$	-	-	± 100	nA
$ \begin{array}{ c c c c c c } \hline \end{picture} \hline \hline \end{picture} \hline \end{picture} \hline \end{picture} \hline \hline \end{picture} \hline \end{picture} \hline \hline \end$			$V_{GS} = 0 V$	V _{DS} = -40 V	-	-	-1	
$ \begin{array}{ c c c c c } \hline On-State Drain Current^a & I_D(on) & V_{GS} = -10 \ V & V_{DS} \le -5 \ V & -60 & - & - & \\ \hline V_{GS} = -10 \ V & I_D = -17 \ A & - & 0.012 & - & \\ \hline V_{GS} = -10 \ V & I_D = -50 \ A, \ T_J = 125 \ ^{\circ}C & - & 0.007 & - & \\ \hline V_{GS} = -10 \ V & I_D = -50 \ A, \ T_J = 125 \ ^{\circ}C & - & 0.020 & - & \\ \hline V_{GS} = -10 \ V & I_D = -50 \ A, \ T_J = 175 \ ^{\circ}C & - & 0.020 & - & \\ \hline V_{GS} = -4.5 \ V & I_D = -14 \ A & - & 0.015 & - & \\ \hline Dynamic \ b & & & & & & & & & & & \\ \hline Dynamic \ b & & & & & & & & & & & & & & & & \\ \hline Dynamic \ b & & & & & & & & & & & & & & & & & &$	Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	$V_{DS} = -40 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$	-	-	-50	μA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{GS} = 0 V$	V _{DS} = -40 V, T _J = 175 °C	-	-	-150	
$ \begin{array}{ c c c c c } \hline \mbox{Parime \circ} Pari$	On-State Drain Current ^a	I _{D(on)}	V _{GS} = -10 V	$V_{DS} \le -5 V$	-60	-	-	Α
$ \begin{array}{ c c c c c } \hline Drain-Source On-State Resistance^a \\ \hline P_{DS(on)} \\ \hline \hline V_{GS} = -10 \ V \\ \hline V_{GS} = -10 \ V \\ \hline I_D = -50 \ A, \ T_J = 175 \ ^{\circ}C \\ \hline - \\ \hline 0.020 \\ \hline - \\ 0.020 \\ \hline - \\ 0.015 \\$			V _{GS} = -10 V	I _D = -17 A	-	0.012	-	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ducia Course On Otata Decistor es?		$V_{GS} = -10 \text{ V}$	I _D = -50 A, T _J = 125 °C	-	0.017	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain-Source On-State Resistance ^a	H _{DS(on)}	V _{GS} = -10 V	I _D = -50 A, T _J = 175 °C	-	0.020	-	Ω
Dynamic b Input Capacitance C_{iss} $V_{GS} = 0 V$ $V_{DS} = -25 V, f = 1 MHz$ $ 2872$ 3950 Output Capacitance C_{oss} $V_{GS} = 0 V$ $V_{DS} = -25 V, f = 1 MHz$ $ 508$ 635 Reverse Transfer Capacitance C_{rss} $V_{GS} = -10 V$ $V_{DS} = -30 V, I_D = -50 A$ $ 600$ 80 Gate-Source Charge ° Q_{gd} $V_{GS} = -10 V$ $V_{DS} = -30 V, I_D = -50 A$ $ 600$ 80 Gate-Source Charge ° Q_{gd} $V_{GS} = -10 V$ $V_{DS} = -30 V, I_D = -50 A$ $ 5.7$ 8.6 Gate Resistance R_g $f = 1 MHz$ 1.5 3 4.5 Turn-On Delay Time ° $t_{d(on)}$ $V_{DD} = -20 V, R_L = 0.4 \Omega$ $ 10$ 15 Rise Time ° t_r $V_{DD} = -50 A, V_{GEN} = -10 V, R_g = 1 \Omega$ $ 10$ 15 Fall Time ° t_f T_f $ 400$ 60 Fall Time ° t_f T_f $ -$ <t< td=""><td></td><td></td><td>$V_{GS} = -4.5 V$</td><td>I_D = -14 A</td><td>-</td><td>0.015</td><td>-</td><td></td></t<>			$V_{GS} = -4.5 V$	I _D = -14 A	-	0.015	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Transconductance ^a		V _{DS} =	= -15 V, I _D = -17 A	-	61	-	S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b					•		
$ \begin{array}{ c c c c c c c } \hline Reverse Transfer Capacitance & C_{rss} & & & & & & & & & & & & & & & & & & $	Input Capacitance	C _{iss}			-	2872	3950	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	$V_{GS} = 0 V$	V _{DS} = -25 V, f = 1 MHz	-	508	635	pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			-	352	440	
$ \begin{array}{ c c c c c c } \hline Gate-Drain Charge ^{\circ} & Q_{gd} & & & & & & & & & & & & & & & & & & &$	Total Gate Charge ^c	Qg			-	60	80	
$ \begin{array}{c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ \text{MHz} & 1.5 & 3 & 4.5 \\ \hline Turn-On Delay Time ^{\circ} & t_{d(on)} \\ \hline Rise Time ^{\circ} & t_r & \\ \hline Turn-Off Delay Time ^{\circ} & t_{d(off)} \\ \hline Fall Time ^{\circ} & t_f & \\ \hline \end{array} \\ \hline \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge ^c	Q _{gs}	V _{GS} = -10 V	$V_{DS} = -30 \text{ V}, I_D = -50 \text{ A}$	-	5.7	8.6	nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge ^c	Q _{gd}			-	14.7	22	
Rise Time °tr $V_{DD} = -20 \text{ V}, \text{ R}_L = 0.4 \Omega$ -1218Turn-Off Delay Time °td(off)Fall Time °tfSource-Drain Diode Ratings and Characteristics bPulsed Current aIsm	Gate Resistance	Rg		f = 1 MHz	1.5	3	4.5	Ω
Turn-Off Delay Time ° $t_{d(off)}$ $I_D \cong -50 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$ -4060Fall Time ° t_f -1624Source-Drain Diode Ratings and Characteristics bPulsed Current a I_{SM}	Turn-On Delay Time ^c	t _{d(on)}			-	10	15	
Fail Time ° t _f - 16 24 Source-Drain Diode Ratings and Characteristics ^b - - - - - - 200 Pulsed Current ^a I _{SM} - - - - - - 200	Rise Time ^c	t _r	V _{DD} =	-20 V, R _L = 0.4 Ω	-	12	18	
Source-Drain Diode Ratings and Characteristics ^b Pulsed Current ^a I _{SM} - - -200	Turn-Off Delay Time ^c	t _{d(off)}	I _D ≅ -50 A,	V_{GEN} = -10 V, R_{g} = 1 Ω	-	40	60	ns
Pulsed Current ^a I _{SM} 200	Fall Time ^c	t _f	1		-	16	24	1
	Source-Drain Diode Ratings and Char	acteristics ^b						
Forward Voltage V_{SD} $I_F = -50 \text{ A}, V_{GS} = 0 \text{ V}$ 1 -1.5	Pulsed Current ^a	I _{SM}			-	-	-200	Α
	Forward Voltage	V _{SD}	I _F =	-50 A, V _{GS} = 0 V	-	-1	-1.5	V

Notes

a. Pulse test; pulse width $\leq 300~\mu\text{s},$ duty cycle $\leq 2~\%.$

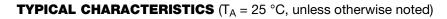
b. Guaranteed by design, not subject to production testing.

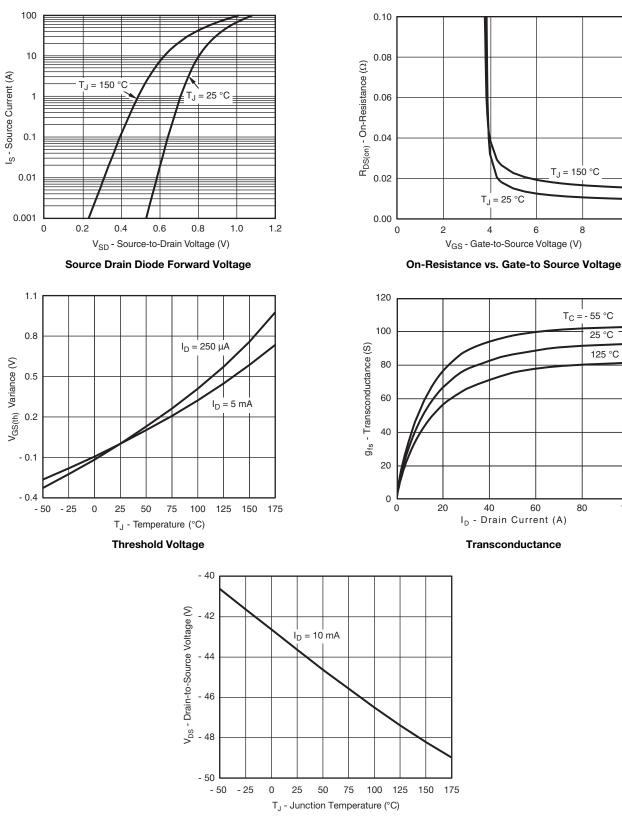
c. Independent of operating temperature.

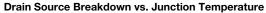

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

VBsemi Bsemi.com

TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

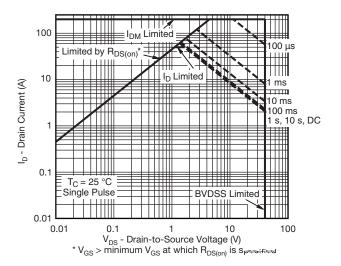


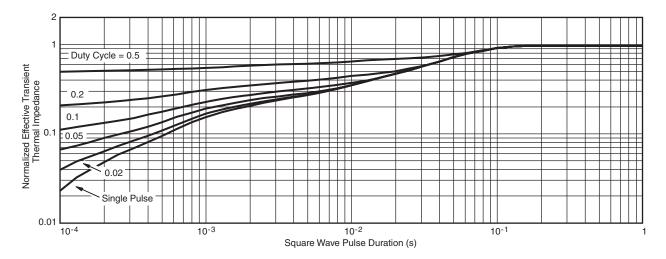

On-Resistance vs. Junction Temperature



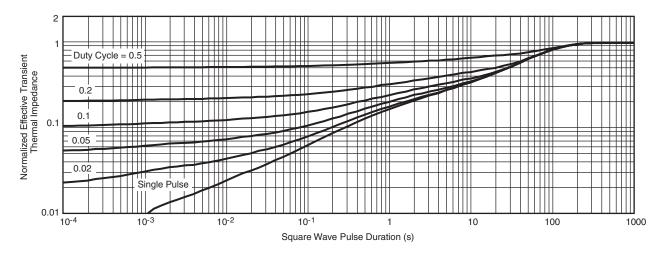
10

100





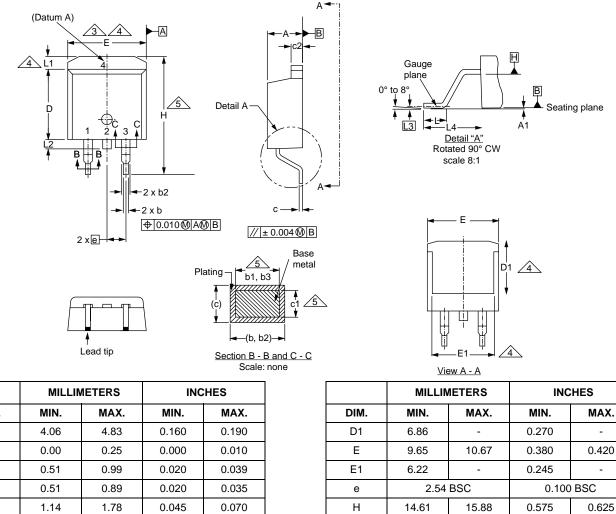
TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)



Safe Operating Area

Normalized Thermal Transient Impedance, Junction-to-Case

Normalized Thermal Transient Impedance, Junction-to-Ambient


Note

- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
 - Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.

TO-263AB (HIGH VOLTAGE)

	MILLIN	IETER5	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.
А	4.06	4.83	0.160	0.190
A1	0.00	0.25	0.000	0.010
b	0.51	0.99	0.020	0.039
b1	0.51	0.89	0.020	0.035
b2	1.14	1.78	0.045	0.070
b3	1.14	1.73	0.045	0.068
с	0.38	0.74	0.015	0.029
c1	0.38	0.58	0.015	0.023
c2	1.14	1.65	0.045	0.065
D	8.38	9.65	0.330	0.380
ECN: S-82	2110-Rev. A.	15-Sep-08		

ECN: S-82110-Rev. A, 15-Sep-08 DWG: 5970

Notes

1. Dimensioning and tolerancing per ASME Y14.5M-1994.

2. Dimensions are shown in millimeters (inches).

3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body at datum A.

4. Thermal PAD contour optional within dimension E, L1, D1 and E1.

5. Dimension b1 and c1 apply to base metal only.

6. Datum A and B to be determined at datum plane H.

7. Outline conforms to JEDEC outline to TO-263AB.

2.79

1.65

1.78

5.28

0.25 BSC

1.78

-

-

4.78

0.070

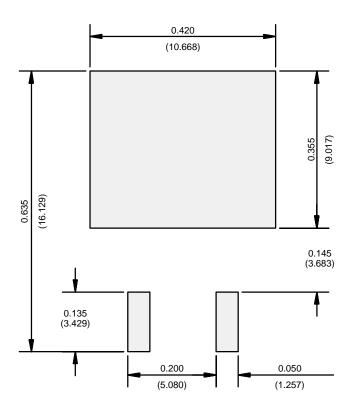
-

-

0.188

0.010 BSC

0.110


0.066

0.070

0.208

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.