

2SJ660-VB Datasheet

P-Channel 60 V (D-S) MOSFET

PRODUCT SUMMARY			
V _{DS} (V)	R _{DS(on)} (Ω) Max.	I _D (A)	Q _g (Typ.)
- 60	0.048at V _{GS} = - 10 V	- 35	60
- 00	0.060at V _{GS} = - 4.5 V	- 30	00

FEATURES

- Halogen-free According to IEC 61249-2-21
 Definition
- Trench Power MOSFET
- 100 % R_q and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Power Switch
- Load Switch in High Current Applications
- DC/DC Converters

ABSOLUTE MAXIMUM RATINGS	(T _C = 25 °C, unless oth	nerwise noted)		
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	- 60	V	
Gate-Source Voltage	V _{GS}	± 20	v	
Continuous Drain Current ($T_1 = 150 \ ^{\circ}C$)	T _C = 25 °C	I _D	- 35	
Continuous Drain Current (1) = 150°C)	T _C = 70 °C	D	- 30	A
Pulsed Drain Current (t = 300 µs)	I _{DM}	I _{DM} - 100 I _{AS} - 32		
Avalanche Current	I _{AS}			
Single Avalanche Energy ^a	L = 0.1 mH	E _{AS}	51	mJ
	T _C = 25 °C	P	61 ^b	
Maximum Power Dissipation ^a	T _A = 25 °C ^c	– P _D –	6.1	W
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 to 150	°C	

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Limit	Unit		
Junction-to-Ambient (PCB Mount) ^c	R _{thJA}	60	°C/W		
Junction-to-Case (Drain)	R _{thJC}	3	C/VV		

Notes:

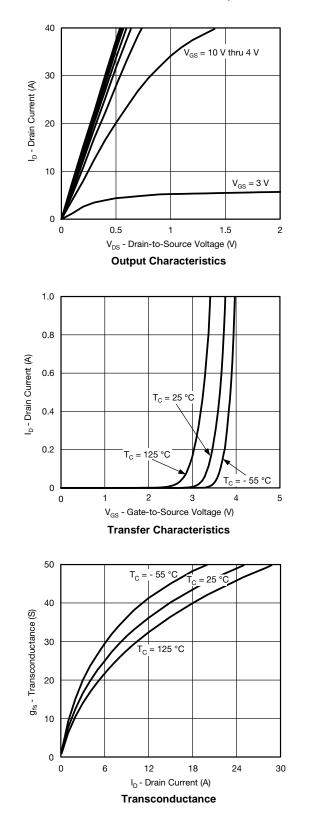
a. Duty cycle \leq 1 %.

b. See SOA curve for voltage derating.

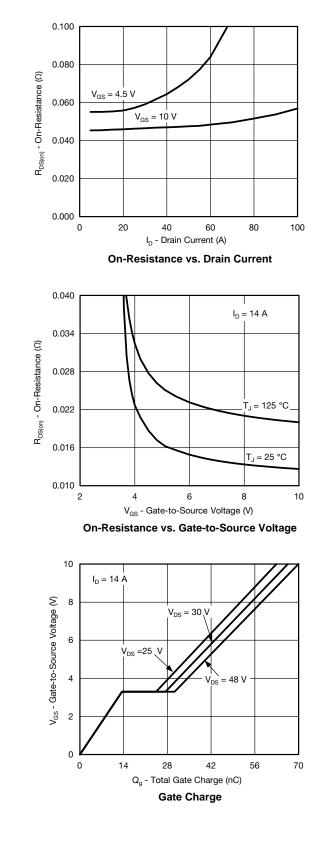
c. When mounted on 1" square PCB (FR-4 material).

$\begin{array}{ c c c c c c } \hline Parameter & Symbol & Test Conditions & Min. & Typ. & Max. & Unit \\ \hline Static & & & & & & & & & & & & & & & & & & &$	SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)						
$\begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage V_{DS} & V_{DS} = 0 V, I_{D} = -250 \ \mu A & -60 & & V \\ \hline Gate Threshold Voltage V_{GS(th)} & V_{DS} = 0 V, V_{GS} = -250 \ \mu A & -1 & -2.5 & A \\ \hline Gate Body Leakage & I_{GSS} & V_{DS} = 0 V, V_{GS} = 20 V & & \pm 250 & A \\ \hline Gate Body Leakage & I_{GSS} & V_{DS} = -60 V, V_{GS} = 20 V & & \pm 250 & A \\ \hline V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 125 \ c & & -50 & V \\ \hline V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 125 \ c & & -250 & A \\ \hline V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 150 \ c & & -250 & A \\ \hline V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 150 \ c & & -250 & A \\ \hline V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 150 \ c & & -250 & A \\ \hline Drain-Source On-State Resistance^a P_{DS}(on) & V_{DS} = -10 V, I_{D} = -14 A & 0.048 & & \\ \hline V_{GS} = -10 V, I_{D} = -12 A & 0.060 & & & \\ \hline V_{OS} = -20 V, I_{D} = -14 A & 0.048 & & \\ \hline V_{OS} = -20 V, I_{D} = -14 A & 0.006 & & \\ \hline Drain-Source On-State Resistance & C_{iss} & & \\ \hline Duptu Capacitance & C_{iss} & & \\ \hline Duptu Capacitance & C_{iss} & & \\ \hline Cutput Capacitance & C_{iss} & & \\ \hline Cate Courge^c & Q_g & & \\ \hline Cate Courge^c & Q_g & & \\ \hline Cate Courge^c & Q_g & & \\ \hline Cate Courge^c & Q_{gg} & & \\ \hline Cate Reverse Transfer Capacitance & C_{iss} & & \\ \hline Cutpun Charge^c & Q_g & & \\ \hline Cate Reverse Charge^c & Q_g & & \\ \hline Cate Reverse Charge^c & I_{0}(on) & \\ \hline Rise Time^c & t_{1} & & \\ \hline U_{D} = -30 V, V_{GS} = -10 V, I_{D} = -14 A & & \\ \hline D_{D} = -10 A, V_{GS} = -10 V, R_g = 1 \Omega & & \\ \hline D_{1} = -10 A, V_{GS} = 1 DV, R_g = 1 \Omega & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V & & \\ \hline D_{1} = -10 A, V_{GS} = 0 V &$	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
$ \begin{array}{ c c c c c c } \hline {\rm Gate Threshold Voltage} & V_{\rm GS(th)} & V_{\rm DS} = V_{\rm GS}, I_{\rm D} = -250 \ \mu {\rm A} & -1 & -2.5 & V \\ \hline {\rm Gate-Body Leakage} & I_{\rm GSS} & V_{\rm DS} = 0 \ V, V_{\rm GS} = 2 \ 0 \ V & 2 \ 50 & {\rm nA} \\ \hline {\rm V}_{\rm DS} = -60 \ V, V_{\rm GS} = 0 \ V, T_{\rm J} = 125 \ C & -50 & {\rm nA} \\ \hline {\rm V}_{\rm DS} = -60 \ V, V_{\rm GS} = 0 \ V, T_{\rm J} = 125 \ C & -50 & {\rm nA} \\ \hline {\rm V}_{\rm DS} = -60 \ V, V_{\rm GS} = 0 \ V, T_{\rm J} = 125 \ C & -50 & {\rm nA} \\ \hline {\rm V}_{\rm DS} = -60 \ V, V_{\rm GS} = 0 \ V, T_{\rm J} = 125 \ C & -50 & {\rm nA} \\ \hline {\rm V}_{\rm DS} = -60 \ V, V_{\rm GS} = 0 \ V, T_{\rm J} = 150 \ C & -250 & {\rm nA} \\ \hline {\rm V}_{\rm DS} = -60 \ V, V_{\rm GS} = 0 \ V, T_{\rm J} = 150 \ C & -250 & {\rm nA} \\ \hline {\rm N}_{\rm DS} = -60 \ V, V_{\rm GS} = 0 \ V, T_{\rm J} = 150 \ C & -250 & {\rm nA} \\ \hline {\rm N}_{\rm DS} = -10 \ V, I_{\rm D} = -14 \ A & 0 \ 0.048 & {\rm nA} \\ \hline {\rm N}_{\rm GS} = -10 \ V, I_{\rm D} = -14 \ A & 0 \ 0.060 & {\rm nA} \\ \hline {\rm N}_{\rm SS} = -10 \ V, I_{\rm D} = -14 \ A & 0 \ 0.060 & {\rm nA} \\ \hline {\rm N}_{\rm SS} = -10 \ V, I_{\rm D} = -10 \ A \ 0.060 & {\rm nA} \\ \hline {\rm N}_{\rm SS} = -30 \ V, I_{\rm D} = -10 \ A \ 0.060 & {\rm nA} \\ \hline {\rm N}_{\rm SS} = -30 \ V, I_{\rm D} = -10 \ A \ 0.060 & {\rm nA} \\ \hline {\rm N}_{\rm SS} = -10 \ V, I_{\rm D} = -10 \ A \ 0.0060 & {\rm nA} \\ \hline {\rm N}_{\rm SS} = -10 \ V, I_{\rm D} = -14 \ A & 40 & {\rm nC} \\ \hline {\rm N}_{\rm SS} = -30 \ V, V_{\rm DS} = -30 \ V, I_{\rm D} = -14 \ A & 13.5 \ {\rm nC} \\ \hline {\rm N}_{\rm DS} = -30 \ V, V_{\rm SS} = -30 \ V, I_{\rm D} = -14 \ A & 13.5 \ {\rm nC} \\ \hline {\rm Cate Charge}^{\circ} \ Q_{\rm Qg} & {\rm f} = 1 \ {\rm MHz} & 0.5 \ 2.5 \ 5 \ \Omega \\ \hline {\rm Gate Charge}^{\circ} \ Q_{\rm Qg} & {\rm f} = 1 \ {\rm MHz} & 0.5 \ 2.5 \ 5 \ \Omega \\ \hline {\rm N}_{\rm DS} = -30 \ V, V_{\rm SS} = -30 \ V, I_{\rm D} = -14 \ A \\ \hline {\rm 10} \ 2.0 \ & 11 \ 2.0 \ \\ \hline {\rm N}_{\rm D} = -10 \ A, V_{\rm CS} = -10 \ V, I_{\rm S} = 1 \ \Omega \\ \hline {\rm N}_{\rm D} = -10 \ A, V_{\rm CS} = 1 \ \Omega \\ \hline {\rm N}_{\rm D} = -10 \ A, V_{\rm CS} = 1 \ \Omega \\ \hline {\rm N}_{\rm D} = -10 \ A, V_{\rm CS} = 0 \ V \\ \hline {\rm N}_{\rm D} = -10 \ A, V_{\rm CS} = 0 \ V \\ \hline {\rm N}_{\rm D} = -10 \ A, V_{\rm CS} = 0 \ V \\ \hline {\rm N}_{\rm C} \ A \ \ A \ A \\ \hline {\rm N}_{\rm C} \ A \ $	Static						
$ \begin{array}{c c c c c c c } \hline \text{Gate Threshold Voltage} & V_{\text{GS}}(h) & V_{\text{DS}} = V_{\text{GS}}, h = -250 \ \mu\text{A} & -1 & -2.5 & -$	Drain-Source Breakdown Voltage	V _{DS}	$V_{DS} = 0 V, I_{D} = -250 \mu A$	- 60			v
$ \begin{array}{ c c c c c c } \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = -10 \ V \\ \hline V_{DS} = -60 \ V, \ V_{GS} = -10 \ V \\ \hline V_{DS} = -60 \ V, \ V_{DS} = -10 \ V \\ \hline V_{CS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -60 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -60 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -30 \ V, \ V_{DS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -30 \ V, \ V_{CS} = 10 \ V \\ \hline V_{DS} = -30 \ V, \ V_{CS} = 10 \ V \\ \hline V_{DS} = -30 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -10 \ V, \ V_{DS} = -10 \ V \\ \hline V_{DS} = -30 \ V, \ V_{CS} = 10 \ V \ V_{DS} = -10 \ V \\ \hline V_{DS} = -30 \ V, \ V_{CS} = 10 \ V \ V_{DS} = -10 \ V \ V_{CS} = 10 \ V \ V_{DS} = -10 \ V \ V_{CS} = 10 \ V \ V_{CS} =$	Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	- 1		- 2.5	
$ \begin{array}{ c c c c c c c } Zero Gate Voltage Drain Current & I_{DSS} & V_{DS} = -60 \ V, \ V_{GS} = 0 \ V, \ V_{J} = 125 \ ^{\circ}C & & & -50 \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V, \ V_{J} = 150 \ ^{\circ}C & & & -250 \\ \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V, \ V_{J} = 150 \ ^{\circ}C & & & -250 \\ \hline V_{DS} = -60 \ V, \ V_{GS} = -10 \ V, \ V_{GS} = -10 \ V & -30 & & & & A \\ \hline V_{GS} = -10 \ V, \ V_{DS} = -10 \ V & -30 & & & & & & A \\ \hline V_{GS} = -10 \ V, \ V_{DS} = -10 \ V & -30 & & & & & & & & & & & & & & & & & & &$	Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V			± 250	nA
$ \begin{array}{ c c c c c c } \hline V_{DS} = -60 \ V, \ V_{GS} = 0 \ V, \ T_J = 150 \ ^{\circ} C & & & & & & & & & & & & & & & & & & $			$V_{DS} = -60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			- 1	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}				- 50	
$ \begin{array}{ c c c c c } \hline P_{QS} = -10 \ V, \ _{D} = -14 \ A & 0.048 & 0.04$			$V_{DS} = -60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 150 ^{\circ}\text{C}$			- 250	
$\begin{array}{ c c c c c c c } \hline \mbox{Drain-Source On-State Resistance}^a & \mbox{P}_{DS(on)} & \begin{tabular}{ c c c c c } \hline \mbox{V}_{GS} = -4.5 \ V, \ I_D = -12 \ A & 0.060 & \end{tabular} & \end{tabuar} & \end{tabular} & $	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le$ - 10 V, V_{GS} = - 10 V	- 30			A
Forward Transconductance ^a y_{ls} $V_{CS} = -4.5$, $v_{lp} = -12$ A 0.060 -1000 Porward Transconductance ^a y_{ls} $V_{DS} = -20$ V, $l_{D} = -14$ A 40 S Dynamic ^b UNIT Capacitance Ciss $V_{GS} = 0$ V, $V_{DS} = -30$ V, $f = 1$ MHz 400 pF Qutput Capacitance C_{css} $V_{GS} = 0$ V, $V_{DS} = -30$ V, $f = 1$ MHz 200 pF Qutput Capacitance C_{rss} $V_{GS} = 0$ V, $V_{DS} = -30$ V, $f = 1$ MHz 200 p Total Gate Charge ^c Q_{g} Q_{gd} A_{DS} A_{DS} A_{DS} A_{DS} A_{DS} Gate Charge ^c Q_{gd} $f = 1$ MHz 0.5 2.5 5 Ω Gate Resistance R_g $f = 1$ MHz 0.5 2.5 5 Ω Turn-On Delay Time ^c t_g 10 20 111 20 10 20 10 F		P	V _{GS} = - 10 V, I _D = - 14 A		0.048		Ω
$ \begin{array}{c c c c c c c c } \hline \textbf{Dynamic}^{b} & & & & & & & & & & & & & & & & & & &$	Drain-Source On-State Resistance	''DS(on)	V _{GS} = - 4.5 V, I _D = - 12 A		0.060		
$ \begin{array}{c c c c c c c c c } \hline Input Capacitance & C_{1SS} \\ \hline Output Capacitance & C_{oss} \\ \hline Output Capacitance & C_{rss} \\ \hline Output Capacitance & C_{rss} \\ \hline Total Gate Charge^{c} & Q_{g} \\ \hline Gate-Source Charge^{c} & Q_{gd} \\ \hline Turn-On Delay Time^{c} & t_{d(on)} \\ \hline Rise Time^{c} & t_{d(off)} \\ \hline Turn-Off Delay Time^{c} & t_{d(off)} \\ \hline Fall Time^{c} & t_{f} \\ \hline \\ \hline D_{a}^{\simeq} - 10 \ A, \ V_{GEN} = - 10 \ V, \ R_{g} = 1 \ \Omega \\ \hline \\ \hline D_{a}^{\simeq} - 10 \ A, \ V_{GS} = 0 \ V \\ \hline \\$	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 20 V, I _D = - 14 A		40		S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b		· · · · · ·				
Reverse Transfer Capacitance C_{rss} 120 120 Total Gate Charge ^c Q_g 0_{gs}	Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = - 30 V, f = 1 MHz		1650		pF
$ \begin{array}{c c c c c c c c c } \hline Total Gate Charge^{\circ} & Q_{g} & & & & & & & & & & & & & & & & & & &$	Output Capacitance	C _{oss}			200		
$ \begin{array}{c c c c c c c } \hline Gate-Source Charge^{c} & Q_{gd} & $V_{DS} = -30V, V_{GS} = -10V, I_{D} = -14A$ & 13.5 & 14 & 14 & 14 & 14 & 14 & 14 & 15 & 16 & 14 & 16 & 14 & 16 &$	Reverse Transfer Capacitance	C _{rss}			120		
$ \begin{array}{c c c c c c } \hline Gate-Drain Charge^c & Q_{gd} & & & & & & & & & & & & & & & & & & &$	Total Gate Charge ^c	Qg			67		nC
$ \begin{array}{c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ \mbox{MHz} & 0.5 & 2.5 & 5 & \Omega \\ \hline Turn-On \ \mbox{Delay Time}^c & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge ^c	Q _{gs}	$V_{DS} = -30V$, $V_{GS} = -10$ V, $I_{D} = -14$ A		13.5		
$\begin{tabular}{ c c c c c c } \hline Turn-On Delay Time^c & t_{d(on)} \\ \hline Rise Time^c & t_r & \\ \hline Turn-Off Delay Time^c & t_{d(off)} \\ \hline Turn-Off Delay Time^c & t_{d(off)} \\ \hline Tain-Source Body Diode Ratings and Characteristics $T_C = 25 °C^b$ & 11 20$ & 12 20$ &$	Gate-Drain Charge ^c	Q _{gd}			14		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	Rg	f = 1 MHz	0.5	2.5	5	Ω
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time ^c	t _{d(on)}			10	20	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time ^c	t _r	55 · E		11	20	ns
Drain-Source Body Diode Ratings and Characteristics $T_C = 25 \ ^{\circ}C^b$ Continuous CurrentIs- 35APulsed CurrentIsM- 100- 100Forward Voltage ^a VSDIF = - 10 A, V_GS = 0 V- 0.8- 1.5VReverse Recovery Time t_{rr} 3857nsPeak Reverse Recovery CurrentIRM(REC)IF = - 10 A, dl/dt = 100 A/µs2.33.5A	Turn-Off Delay Time ^c	t _{d(off)}			42	63	
$\begin{tabular}{ c c c c c c c c } \hline Continuous Current & I_S & & & & & & & & & & & & & & & & & & &$	Fall Time ^c	t _f			12	20	
Pulsed Current I I A Forward Voltage ^a V _{SD} I _F = -10 A, V _{GS} = 0 V -0.8 -1.5 V Reverse Recovery Time t_{rr} 38 57 ns Peak Reverse Recovery Current I _{RM(REC)} I _F = -10 A, dI/dt = 100 A/µs 2.3 3.5 A	Drain-Source Body Diode Ratings a	nd Characteri	stics T _C = 25 °C ^b				
$\begin{tabular}{ c c c c c c } \hline Pulsed Current & I_{SM} & & & & & & & & & & & & & & & & & & &$	Continuous Current	۱ _S				- 35	A
Reverse Recovery Time t_{rr} 3857nsPeak Reverse Recovery Current $I_{RM(REC)}$ $I_F = -10 \text{ A}, dI/dt = 100 \text{ A/}\mu s$ 2.33.5A	Pulsed Current	I _{SM}			1	- 100	
Peak Reverse Recovery CurrentIRM(REC)IF = - 10 A, dl/dt = 100 A/µs2.33.5A	Forward Voltage ^a	V _{SD}	I _F = - 10 A, V _{GS} = 0 V		- 0.8	- 1.5	V
	Reverse Recovery Time	t _{rr}	I _F = - 10 A, dl/dt = 100 A/μs		38	57	ns
Reverse Recovery Charge Q _{rr} 40 60 nC	Peak Reverse Recovery Current	I _{RM(REC)}			2.3	3.5	А
	Reverse Recovery Charge	Q _{rr}			40	60	nC

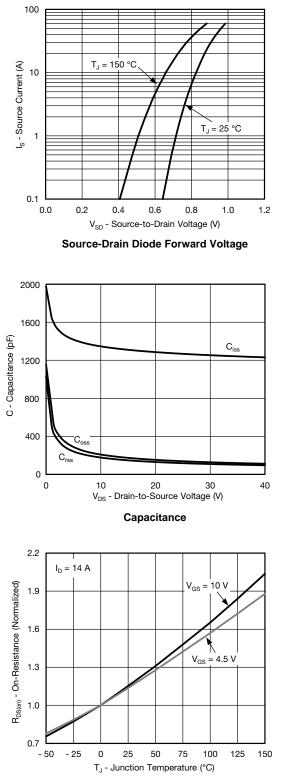
Notes:


a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %. b. Guaranteed by design, not subject to production testing.

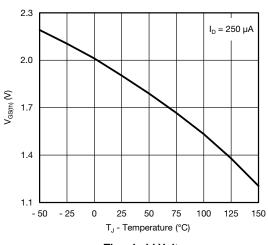
c. Independent of operating temperature.

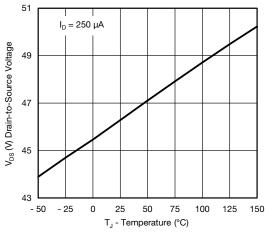

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

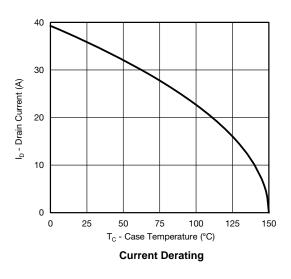
emi emi.com

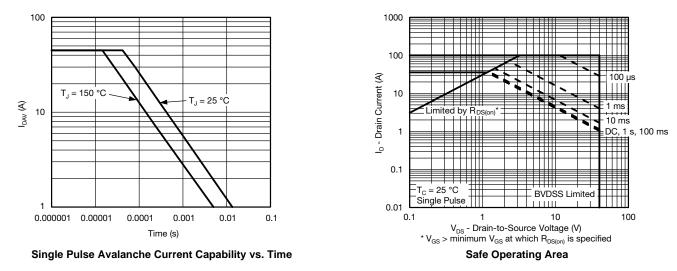


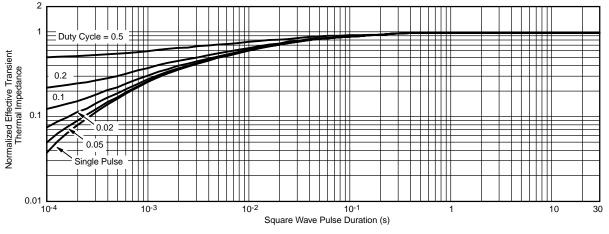
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

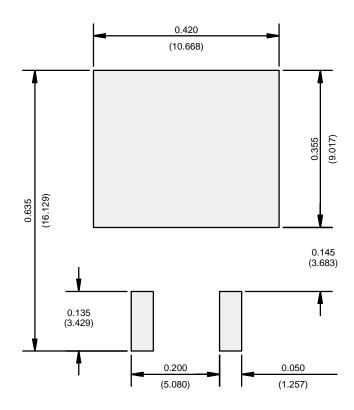





On-Resistance vs. Junction Temperature


Threshold Voltage


Drain Source Breakdown vs. Junction Temperature


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Case

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.