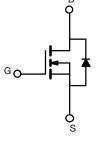


NP180N055TUJ-VB Datasheet N-Channel 60 V (D-S) 175 °C MOSFET


PRODUCT SUMMARY				
V _{DS} (V)	60			
$R_{DS(on)}$ (Ω) at V_{GS} = 10 V	0.00163			
I _D (A)	150			
Configuration	Single			
Package	TO-263-7L			

FEATURES

- Trench power MOSFET
- Package with low thermal resistance
- 100 % $\rm R_g$ and UIS tested

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)					
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-source voltage		V _{DS}	60	V	
Gate-source voltage		V _{GS}	± 20		
Continuous drain current	T _C = 25 °C	- I _D -	150		
	T _C = 125 °C		120 ^a		
Continuous source current (diode conduction) ^a		I _S	120	А	
Pulsed drain current ^b		I _{DM}	400		
Single pulse avalanche current	L = 0.1 mH	I _{AS}	75		
Single pulse avalanche energy		E _{AS}	281	mJ	
Maximum power dissipation ^b	T _C = 25 °C	D	375	W	
	T _C = 125 °C	PD	125	vv	
Operating junction and storage temperature rang	le	T _J , T _{stg}	-55 to +175	°C	

THERMAL RESISTANCE RATINGS				
PARAMETER		SYMBOL	LIMIT	UNIT
Junction-to-ambient	PCB mount ^c	R _{thJA}	40	°C/W
Junction-to-case (drain)	on-to-case (drain)		0.4	0/10

Notes

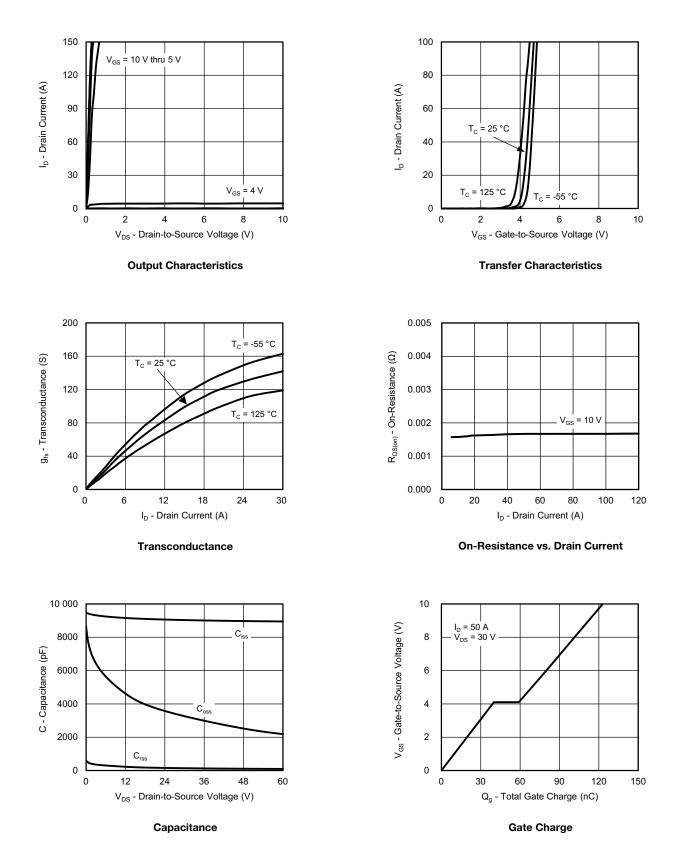
a. Package limited

b. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$

c. When mounted on 1" square PCB (FR4 material)

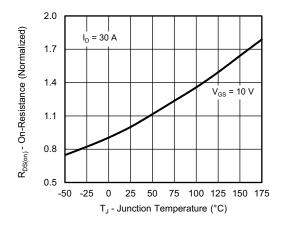
$\begin{split} \textbf{SPECIFICATIONS (Γ_{0} = 25 $^{\circ}$C, unless otherwise noted)} \\ \hline PARAMETER $Vallow Va									
	SPECIFICATIONS ($T_c = 25 \text{ °C}$, unless otherwise noted)								
$\begin{array}{ c c c c c } \hline Drain-source breakdown voltage V_{DS} & $V_{OS} = 0 V, $I_D = 250 μA$ & 60 & $-$ & $-$ & V \\ \hline Gate-source threshold voltage $V_{GS(h)}$ & $V_{DS} = V_{GS, $I_D = 250 μA$ & 2.5 & 3.0 & 3.5 \\ \hline Gate-source leakage I_{GSS} & $V_{DS} = 0 V, $V_{GS} = $20 V$ & $-$ & $-$ & \pm100$ & nA$ \\ \hline Product $V_{GS} = 0 V$ & $V_{DS} = 60 V$ & $-$ & $-$ & \pm100$ & nA$ \\ \hline V_{GS} = 0 V$ & $V_{DS} = 60 V$ & $-$ & $-$ & $-$ & 50 & μA$ \\ \hline V_{OS} = 0 V$ & $V_{DS} = 60 V$ & $-$ & $-$ & $-$ & 2.50 & μA$ \\ \hline Product $V_{OS} = 0 V$ & $V_{DS} = 60 V$ & $-$ & $-$ & $-$ & 2.50 & μA$ \\ \hline Product $V_{OS} = 0 V$ & $V_{DS} = 60 V$ & $-$ & $-$ & $-$ & 2.50 & μA$ \\ \hline Product $V_{OS} = 0 V$ & $V_{DS} = 50 V$ & 120 & $-$ & $-$ & $-$ & A & $V_{OS} = 10 V$ & $V_{DS} = 50 V$ & 120 & $-$ & $-$ & A & $V_{OS} = 10 V$ & $I_D = 30 A$ & $-$ & 0.00163 & $-$ & $V_{OS} = 10 V$ & $I_D = 30 A$ & $-$ & 0.00360 & $-$ & $V_{OS} = 10 V$ & $I_D = 30 A$ & $-$ & 0.00360 & $-$ & $V_{OS} = 10 V$ & $I_D = 30 A$ & $-$ & 0.00360 & $-$ & $V_{OS} = 10 V$ & $I_D = 30 A$ & $-$ & 142 & $-$ & S & D & $V_{OS} = 10 V$ & $I_D = 30 A$ & $-$ & 142 & $-$ & S & D & $V_{OS} = 10 V$ & $V_{DS} = 25 V$, $f = 1 MHz$ & $-$ & 160 & 200 & $-$ & 160 & 200 & $-$ & 160 & 200 & $-$ & 123 & 185 & $-$ & 160 $	PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT	
$ \begin{array}{ c c c c c } \hline \mbox{Gate-source threshold voltage} & V_{GS}(m) & V_{GS} = V_{GS}, \mbox{I}_{D} = 250 \ \mu A & 2.6 & 3.0 & 3.6 \\ \hline \mbox{Gate-source leakage} & l_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = 250 \ \mu & - & - & \pm 100 & nA \\ \hline \mbox{Max} & V_{DS} = 0 \ V, \ V_{DS} = 60 \ V, \ T_{J} = 125 \ C & - & - & 50 & \mu A \\ \hline \mbox{V} & V_{OS} = 0 \ V & V_{DS} = 60 \ V, \ T_{J} = 125 \ C & - & - & 50 & \mu A \\ \hline \mbox{V} & V_{OS} = 0 \ V & V_{DS} = 60 \ V, \ T_{J} = 125 \ C & - & - & 50 & \mu A \\ \hline \mbox{V} & V_{OS} = 10 \ V & V_{DS} = 50 \ V, \ T_{J} = 125 \ C & - & - & 250 & \mu A \\ \hline \mbox{On-state drain current}^{a} & l_{D(m)} & V_{OS} = 10 \ V & V_{DS} = 50 \ V, \ T_{J} = 125 \ C & - & 0.00163 & - & \\ \hline \mbox{V} & V_{OS} = 10 \ V & \ V_{DS} = 10 \ V & \ I_{D} = 30 \ A, \ T_{J} = 125 \ C & - & 0.00300 & - & \\ \hline \mbox{Parmin} & V_{OS} = 10 \ V & \ I_{D} = 30 \ A, \ T_{J} = 125 \ C & - & 0.00300 & - & \\ \hline \mbox{Parmin} & V_{OS} = 10 \ V & \ I_{D} = 30 \ A, \ T_{J} = 175 \ C & - & 0.00300 & - & \\ \hline \mbox{Parmin} & V_{OS} = 10 \ V & \ I_{D} = 30 \ A, \ T_{J} = 175 \ C & - & 0.00300 & - & \\ \hline \mbox{Parmin} & V_{OS} = 10 \ V \ V_{OS} = 10 \ V, \ I_{D} = 30 \ A, \ T_{J} = 175 \ C & - & 0.00300 \ - & \\ \hline \mbox{Parmin} & V_{OS} = 10 \ V, \ I_{D} = 30 \ A, \ T_{J} = 175 \ C & - & 0.00300 \ - & \\ \hline \mbox{Parmin} & V_{OS} = 10 \ V, \ I_{D} = 30 \ A, \ T_{J} = 175 \ C & - & 0.00300 \ - & \\ \hline \mbox{Parmin} & V_{OS} = 10 \ V, \ V_{DS} = 30 \ V, \ I_{D} = 50 \ A, \ V_{OS} = 10 \ V, \ I_{D} = 30 \ A, \ I_{D} = 50 \ A \ A \ A \ A \ A \ A \ A \ A \ A \ $	Static								
$ \begin{array}{c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Drain-source breakdown voltage	V_{DS}	$V_{GS} = 0 V, I_D = 250 \mu A$		60	-	-	V	
$ \begin{array}{ c c c c c } \mbox{Zero gate voltage drain current} & $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	Gate-source threshold voltage	V _{GS(th)}	V _{DS} =	: V _{GS} , I _D = 250 μA	2.5	3.0	3.5	v	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate-source leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$		-	-	± 100	nA	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		I _{DSS}	$V_{GS} = 0 V$	$V_{DS} = 60 V$	-	-	1	ΠА	
$ \begin{array}{ c c c c c } \hline \mbox{On-state drain current}^a & l_{D(on)} & V_{GS}^a = 10 \ V & V_{DS}^a \ge 5 \ V & 120 & - & - & A \\ \hline \mbox{V}_{GS} = 10 \ V & l_D = 30 \ A, T_J = 125 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{GS} = 10 \ V & l_D = 30 \ A, T_J = 125 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{GS} = 10 \ V & l_D = 30 \ A, T_J = 125 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{GS} = 10 \ V & l_D = 30 \ A, T_J = 175 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{GS} = 10 \ V & l_D = 30 \ A, T_J = 175 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{GS} = 10 \ V & l_D = 30 \ A, T_J = 175 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{GS} = 10 \ V & l_D = 30 \ A, T_J = 175 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{DS} = 15 \ V, \ I_D = 30 \ A, T_J = 175 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{DS} = 10 \ V & I_D = 30 \ A, T_J = 175 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{DS} = 10 \ V & I_D = 30 \ A, T_J = 175 \ C & - & 0.00300 & - & \\ \hline \mbox{V}_{DS} = 10 \ V & V_{DS} = 10 \ V \ V_{DS} = 25 \ V, \ f = 1 \ MHz & - & 142 \ - & S \\ \hline \mbox{V}_{DS} = 30 \ V, \ I_D = 50 \ A, \ V_{GS} = 10 \ V \ V_{DS} = 30 \ V, \ I_D = 50 \ A, \ V_{DS} = 30 \ V, \ I_D = 50 \ A, \ V_{DS} = 30 \ V, \ I_D = 50 \ A, \ V_{DS} = 10 \ V \ V_{DS} = 30 \ V, \ I_D = 50 \ A, \ V_{DS} = 10 \ V \ V_{DS} = 30 \ V, \ I_D = 50 \ A, \ V_{DS} = 10 \ V \ V_{DS} = 30 \ V, \ I_D = 50 \ A, \ V_{DS} = 10 \ V \ V_{DS} = 30 \ V, \ I_D = 50 \ A, \ V_{DS} = 10 \ V \ V_{DS} = 10 \ V \ V_{DS} = 30 \ V, \ I_D = 50 \ A, \ V_{DS} = 10 \ V \ V_{DS} = 10 \ V, \ V_{DS} = 10 \ V \ V_{DS} $	Zero gate voltage drain current		$V_{GS} = 0 V$	V_{DS} = 60 V, T_J = 125 °C	-	-	50	μΛ	
$ \begin{array}{ c c c c c } \hline Part Par$			$V_{GS} = 0 V$	$V_{DS}=60~V,~T_J=175~^\circ C$	-	-	250	μA	
$ \begin{array}{ c c c c c c c } \hline Prain-source on-state resistance $^{\circ}$ & $$P_{DS(on)$}$ & $$V_{GS} = 10 V$ & $I_{D} = 30 \mbox{, } T_J = 125 $^{\circ}$C$ & $-$$ & 0.00300 & $-$$ & 0.00300 & $-$$ & $$V_{GS} = 10 V$ & $I_{D} = 30 \mbox{, } T_J = 175 $^{\circ}$C$ & $-$$ & 0.00300 & $-$$ & $$0.00300$ & $-$$ & $$$0.00300$ & $-$$ & $$$0.00300$ & $-$$ & $$$0.00300$ & $-$$ & $$$$0.00300$ & $-$$ & $$$$0.00300$ & $-$$ & $$$$0.00300$ & $-$$ & $$$$$0.00300$ & $-$$ & $$$$$0.00300$ & $-$$ & $$$$$$0.00300$ & $-$$ & $$$$$$$$0.00300$ & $-$$ & $$$$$$$$$$0.00300$ & $-$$ & $$$$$$$$$$$$$$$$$$$$$$$$$$$$	On-state drain current ^a	I _{D(on)}	V_{GS} = 10 V	$V_{DS} \ge 5 V$	120	-	-	А	
$ \begin{array}{ c c c c c } \hline V_{GS} = 10 \ V & _{D} = 30 \ A, \ T_{J} = 175 \ ^{\circ}{\rm C} & - & 0.00360 & - \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			$V_{GS} = 10 V$	I _D = 30 A	-	0.00163	-	Ω	
$ \begin{array}{c c c c c c c c c } \hline Forward transconductance b & g_{fs} & V_{DS} = 15 V, I_{D} = 30 A & - & 142 & - & S \\ \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline tabul$	Drain-source on-state resistance ^a	R _{DS(on)}	V_{GS} = 10 V	$I_D = 30 \text{ A}, T_J = 125 \ ^\circ\text{C}$	-	0.00300	-		
$ \begin{array}{ c c c c } \hline \textbf{Dynamic b} & & & & & & & & & & & & & & & & & & $			V_{GS} = 10 V	$I_D = 30 \text{ A}, \text{ T}_J = 175 ^\circ\text{C}$	-	0.00360	-		
$ \begin{array}{c c c c c c c } \hline \mbox{lnput capacitance} & \mbox{C}_{168} & \mbox{V}_{GS} = 0 \ V & \mbox{V}_{GS} = 25 \ V, \mbox{f} = 1 \ MHz & \mbox{MHz} & - & \mbox{9100} & \mbox{11 900} & \mbox{9100} & \mbox{11 900} & \mbox{9100} & \mbox{11 900} & \mbox{9100} & \mbox{9100}$	Forward transconductance ^b	9 _{fs}	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 30 \text{ A}$		-	142	-	S	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b							-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input capacitance	C _{iss}		V _{DS} = 25 V, f = 1 MHz	-	9100	11 900	pF	
Total gate charge ° Q_g $V_{GS} = 10 \text{ V}$ $V_{DS} = 30 \text{ V}, I_D = 50 \text{ A}$ $ 123$ 185 nC Gate-source charge ° Q_{gd} $V_{GS} = 10 \text{ V}$ $V_{DS} = 30 \text{ V}, I_D = 50 \text{ A}$ $ 40$ $ nC$ Gate-drain charge ° Q_{gd} $P_{Gate-drain charge ° Q_{gd} 19 nC Gate resistance R_g f = 1 \text{ MHz} 4 8.6 13 \Omega Turn-on delay time ° t_{d(on)} V_{DD} = 30 \text{ V}, R_L = 0.6 \Omega 26 40 - Fail time ° t_r t_{d(off)} t_D = 50 \text{ A}, V_{GS} = 10 \text{ V}, R_g = 1 \Omega 26 40 - Fail time ° t_f t_D = 50 \text{ A}, V_{GS} = 0 \Omega 25 40 240 A Forward voltage V_{SD} I_F = 50 \text{ A}, V_{GS} = 0 \text{ V} 0.84 1.5 V Body diode reverse recovery time t_r I_F = 25 \text{ A}, di/dt = 100 \text{ A}/\mu -$	Output capacitance	C _{oss}	$V_{GS} = 0 V$		-	3550	4700		
$ \begin{array}{ c c c c } \hline Gate-source charge ^{\circ} & Q_{gs} & $V_{GS} = 10 \ V$ $V_{DS} = 30 \ V, \ I_{D} = 50 \ A$ $$I$ $$I$ V $V_{DS} = 30 \ V, \ I_{D} = 50 \ A$ $$I$ $$I$ $$I$ $$I$ $$I$ $$I$ $$I$$	Reverse transfer capacitance	C _{rss}			-	160	220		
$ \begin{array}{ c c c c c } \hline Gate - drain charge ^{\circ} & Q_{gd} & & & & & & & & & & & & & & & & & & &$	Total gate charge ^c	Qg			-	123	185		
$ \begin{split} & \begin{array}{c} \mbox{Gate resistance} & \mbox{R}_g & \mbox{f} = 1 \mbox{ MHz} & \mbox{4} & \mbox{8.6} & \mbox{13} & \mbox{\Omega} \\ & \mbox{Turn-on delay time}^{\circ} & \mbox{t}_{d(on)} & \\ & \mbox{Rise time}^{\circ} & \mbox{t}_r & \\ & \mbox{Turn-off delay time}^{\circ} & \mbox{t}_r & \\ & \mbox{Turn-off delay time}^{\circ} & \mbox{t}_r & \\ & \mbox{Turn-off delay time}^{\circ} & \mbox{t}_{d(off)} & \\ & \mbox{Fall time}^{\circ} & \mbox{t}_r & \\ & \mbox{Fall time}^{\circ} & \mbox{t}_r & \\ & \mbox{Fall time}^{\circ} & \mbox{t}_r & \\ & \mbox{Source-Drain Diode Ratings and Characteristics}^{b} & \\ & \mbox{Forward voltage} & \mbox{Ism} & \mbox{Ism} & \\ & \mbox{Forward voltage} & \mbox{V}_{SD} & \mbox{I}_F = 50 \mbox{ A, V}_{GS} = 0 \mbox{ V} & \mbox{-} & \mbox{0.84} & \mbox{1.5} & \mbox{V} \\ & \mbox{Body diode reverse recovery time} & \mbox{t}_{rr} & \\ & \mbox{Body diode reverse recovery charge} & \mbox{Q}_{rr} & \\ & \mbox{Reverse recovery rise time} & \mbox{t}_a & \\ & \mbox{Reverse recovery rise time} & \mbox{t}_b & \\ & \mbox{Forward time} & \mbox{t}_a & \\ & \mbox{Forward time} & \mbox{t}_a & \\ & \mbox{Reverse recovery rise time} & \mbox{t}_b & \\ & \mbox{Forward time} & \mbox{t}_a & \\ & \mbox{Forward time} & \mbox$	Gate-source charge ^c	Q _{gs}	V_{GS} = 10 V	$V_{DS} = 30 \text{ V}, \text{ I}_{D} = 50 \text{ A}$	-	40	-	nC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-drain charge ^c	Q_{gd}			-	19	-		
Rise time °trVDD = 30 V, RL = 0.6 Ω -2640nsTurn-off delay time °td(off)Fall time °tfFall time °tfSource-Drain Diode Ratings and Characteristics bPulsed current aISMForward voltageVSDIsd y diode reverse recovery timetrrBody diode reverse recovery timetrrReverse recovery fall timetaReverse recovery rise timetaTurn-off delay time °taPulsed current ataIsd y diode reverse recovery timetrrBody diode reverse recovery timetrrIsd y diode reverse recovery timetaTurn-off timetaReverse recovery rise timetaTurn-off delay timetaTurn-off delay time (ta)taTurn-off delay time (ta)ta<	Gate resistance	R _g	f = 1 MHz		4	8.6	13	Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-on delay time ^c	t _{d(on)}				48	75	- ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise time ^c	tr			-	26	40		
Source-Drain Diode Ratings and Characteristics bPulsed current a I_{SM} 240AForward voltage V_{SD} $I_F = 50 \text{ A}, V_{GS} = 0 \text{ V}$ -0.841.5VBody diode reverse recovery time t_{rr} $I_F = 25 \text{ A}, di/dt = 100 \text{ A/µs}$ -100200nsReverse recovery fall time t_a $I_F = 25 \text{ A}, di/dt = 100 \text{ A/µs}$ -48Reverse recovery rise time t_b -53	Turn-off delay time ^c	t _{d(off)}			-	105	160		
Pulsed current aISM240AForward voltage V_{SD} $I_F = 50 \text{ A}, V_{GS} = 0 \text{ V}$ -0.841.5VBody diode reverse recovery time t_{rr} Body diode reverse recovery charge Q_{rr} Reverse recovery fall time t_a Reverse recovery rise time t_b	Fall time ^c	t _f			-	25	40		
Forward voltage V_{SD} $I_F = 50 \text{ A}, V_{GS} = 0 \text{ V}$ -0.841.5VBody diode reverse recovery time t_{rr} Body diode reverse recovery charge Q_{rr} Reverse recovery fall time t_a Reverse recovery rise time t_b	Source-Drain Diode Ratings and Chara	cteristics ^b						-	
Body diode reverse recovery time t_{rr} Body diode reverse recovery charge Q_{rr} Reverse recovery fall time t_a Reverse recovery rise time t_b -100243500-48-53-53	Pulsed current ^a	I _{SM}			-	-	240	А	
Body diode reverse recovery charge Q_{rr} Reverse recovery fall time t_a Reverse recovery rise time t_b IF = 25 A, di/dt = 100 A/µs $-$ 243500IF = 25 A, di/dt = 100 A/µsIF = 25 A, di/dt = 100 A/µs	Forward voltage	V_{SD}	I _F = 50 A, V _{GS} = 0 V		-	0.84	1.5	V	
Reverse recovery fall time t_a Reverse recovery rise time t_b	Body diode reverse recovery time	t _{rr}	- I _F = 25 A, di/dt = 100 A/μs		-	100	200	ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Body diode reverse recovery charge	Q _{rr}			-	243	500	nC	
Reverse recovery rise time tb - 53 -	Reverse recovery fall time	t _a			-	48	-	ne	
Body diode peak reverse recovery current I _{RM(REC)} - -4.6	Reverse recovery rise time	t _b			-	53	-	115	
	Body diode peak reverse recovery current	I _{RM(REC)}			-	-4.6	-	А	

Notes

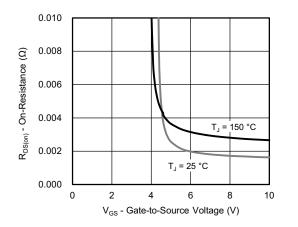

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 % b. Guaranteed by design, not subject to production testing c. Independent of operating temperature

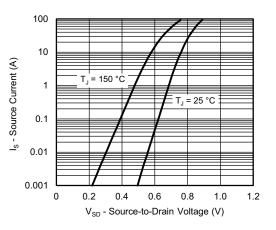
Semi

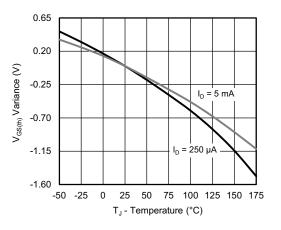
www.VBsemi.com

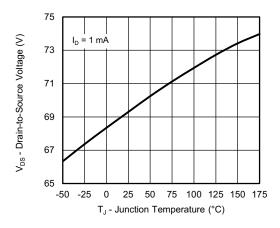


TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

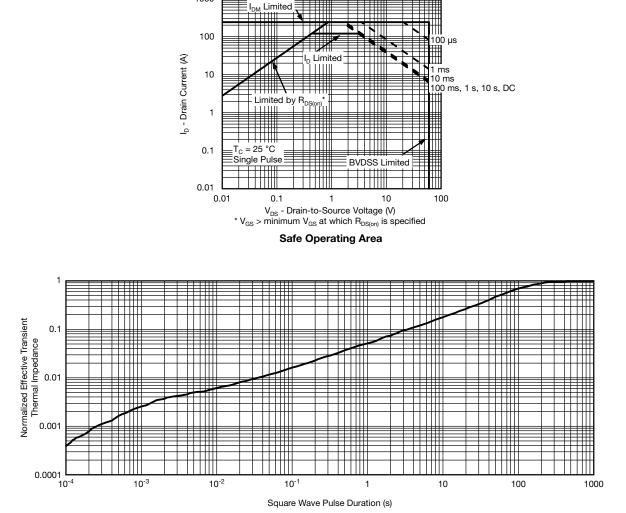



TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)


On-Resistance vs. Junction Temperature

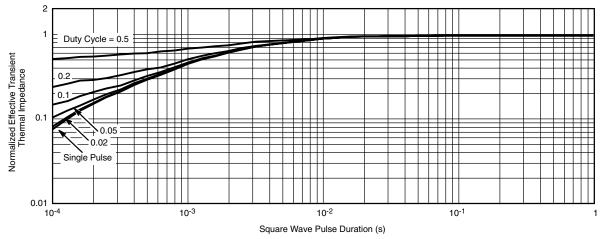

On-Resistance vs. Gate-to-Source Voltage

Source Drain Diode Forward Voltage



Drain Source Breakdown vs. Junction Temperature

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)


1000

Normalized Thermal Transient Impedance, Junction-to-Ambient

THERMAL RATINGS ($T_A = 25 \text{ °C}$, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Case

Note

- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
- Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.