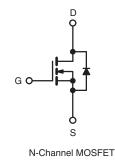


AUIRFZ44NL-VB Datasheet **Power MOSFET**


PRODUCT SUMMARY					
V _{DS} (V)	60				
R _{DS(on)} (Ω)	V _{GS} = 10 V 0.015				
Q _g (Max.) (nC)	110				
Q _{gs} (nC)	29				
Q _{gd} (nC)	36				
Configuration	Single				

FEATURES

- Advanced process technology
- 175 °C operating temperature
- · Fast switching

ABSOLUTE MAXIMUM RATINGS (T _C = 25 °C, unless otherwise noted)						
PARAMETER			LIMIT	UNIT		
		V _{DS}	60	v		
		V _{GS}	± 20	v		
V at 10 V	T _C = 25 °C	– I _D	60			
VGS AL TO V	T _C = 100 °C		50	А		
Pulsed Drain Current ^{a, e}			290			
Linear Derating Factor			1.3	W/°C		
Single Pulse Avalanche Energy ^{b, e}			100	mJ		
T _C =	25 °C	D	190	w		
T _A = 25 °C		PD	3.7	VV		
Peak Diode Recovery dV/dt ^{c, e}			4.5	V/ns		
Operating Junction and Storage Temperature Range			-55 to +175	- °C		
for	10 s		300			
	V_{GS} at 10 V $T_C = T_A = $ e	$V_{GS} \text{ at } 10 \text{ V} \qquad \frac{T_C = 25 \text{ °C}}{T_C = 100 \text{ °C}}$ $T_C = 25 \text{ °C}$ $T_A = 25 \text{ °C}$	$\begin{tabular}{ c c c c c } & SYMBOL & & V_{DS} & & \\ & V_{DS} & & V_{GS} & & \\ & V_{GS} \mbox{ at 10 V } & \hline T_C = 25 \ ^{\circ}C & & I_D & & \\ & & I_D & & & \\ & & I_D & & & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & & I_D & \\ & & & I_D & I_D & I_D & \\ & & & I_D & I_D & I_D & \\ & & & I_D & I_D & I_D & \\ & & & I_D & I_D & I_D & \\ & & I_D & I_D & I_D & I_D & \\ & & I_D & I_D & I_D & I_D & \\ & & I_D & I_D & I_D & I_D & I_D & \\ & & I_D & I_D & I_D & I_D & I_D & \\ & & I_D & \\ & & I_D & I_$	$\begin{tabular}{ c c c c c } \hline $YMBOL$ $LIMIT$ \\ V_{DS} & 60 \\ V_{GS} & \pm20$ \\ \hline $T_C = 25\ ^{\circ}C$ I_D & 60 \\ \hline $T_C = 100\ ^{\circ}C$ & I_D & 60 \\ \hline $T_C = 100\ ^{\circ}C$ & I_D & 50 \\ \hline I_D & 290 \\ \hline I_S & 100 \\ \hline I_S & 100 \\ \hline $I_C = 25\ ^{\circ}C$ P_D & 190 \\ \hline $T_A = 25\ ^{\circ}C$ & P_D & 190 \\ \hline $T_A = 25\ ^{\circ}C$ & P_D & 3.7 \\ \hline dV/dt & 4.5 \\ \hline e & $T_J, T_{stg} & -55 to +175$ \\ \hline \end{tabular}$		

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD} = 25 \text{ V}$, Starting $T_J = 25 \text{ °C}$, $L = 22 \mu$ H, $R_g = 25 \Omega$, $I_{AS} = 72 \text{ A}$ (see fig. 12). c. $I_{SD} \le 72 \text{ A}$, dl/dt $\le 200 \text{ A/}\mu$ s, $V_{DD} \le V_{DS}$, $T_J \le 175 \text{ °C}$. d. 1.6 mm from case. e. Uses IRFZ48, SiHFZ48 data and test conditions.

f. Calculated continuous current based on maximum allowable junction temperature.

THERMAL RESISTANCE RATINGS						
PARAMETER SYMBOL TYP. MAX.						
Maximum Junction-to-Ambient (PCB mount) ^a	R _{thJA}	-	40	°C / W		
Maximum Junction-to-Case (Drain)	R _{thJC}	-	0.8			

Note

a. When mounted on 1" square PCB (FR-4 or G-10 material).

PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static		•					
Drain-Source Breakdown Voltage	V _{DS}	V _{GS}	= 0, I _D = 250 μA	60	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C, I _D = 1 mA ^c	-	0.060	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	- V _{GS} , I _D = 250 μA	1.5	-	3.0	V
Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 20 V$	-	-	± 100	nA
Zero Gate Voltage Drain Current	I _{DSS}		= 60 V, V _{GS} = 0 V V _{GS} = 0 V, T _J = 150 °C	-	-	25 250	μA
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$	$I_{\rm D} = 15 {\rm A}^{\rm b}$	_	0.015	-	Ω
Forward Transconductance	g _{fs}	80	= 25 V, I _D = 15 A ^b	27	-	-	S
Dynamic	010				1		1
Input Capacitance	C _{iss}		$V_{GS} = 0 V,$		3500	-	
Output Capacitance	C _{oss}	-	$V_{GS} = 0 V,$ $V_{DS} = 25 V,$	-	1300	-	pF
Reverse Transfer Capacitance	C _{rss}	f = 1.0	f = 1.0 MHz, see fig. 5 °		190	-	1 .
Total Gate Charge	Qq			-	-	110	
Gate-Source Charge	Q _{gs}	V _{GS} = 10 V	$V_{GS} = 10 V$ $I_D = 12 A, V_{DS} = 48 V,$ see fig. 6 and 13 ^{b, c}		-	29	nC
Gate-Drain Charge	Q _{gd}		see lig. 0 and 13 -, -	-	-	36	1
Turn-On Delay Time	t _{d(on)}			-	8.1	-	- ns
Rise Time	t _r	- V _{DD}	V_{DD} = 30 V, I _D = 12 A, R _g = 9.1 Ω, R _D = 0.34 Ω, see fig. 10 ^{b, c}		250	-	
Turn-Off Delay Time	t _{d(off)}	R _g = 9.1 Ω, R			210	-	
Fall Time	t _f			-	250	-	1
Internal Source Inductance	L _S	Between lead, and center of die contact		-	7.5	-	nH
Drain-Source Body Diode Characteristic	s	<u>.</u>					
Continuous Source-Drain Diode Current	I _S	MOSFET symbol showing the integral reverse p - n junction diode		-	-	50 ^c	
Pulsed Diode Forward Current ^a	I _{SM}			-	-	90	A
Body Diode Voltage	V _{SD}	T _J = 25 °C, I _S = 72 A, V _{GS} = 0 V ^b		-	-	2.0	V
Body Diode Reverse Recovery Time	t _{rr}	- T _J = 25 °C, I _F = 72 A, dl/dt = 100 A/μs ^{b, c}		-	120	180	ns
Body Diode Reverse Recovery Charge	Q _{rr}			-	500	800	μC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by L_S and L_D)					L _D)

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width \leq 300 µs; duty cycle \leq 2 %. c. Uses VBL1615/AUIRFZ44NL-VB data and test conditions.

d. Calculated continuous current based on maximum allowable junction temperature.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

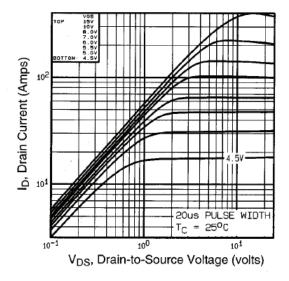


Fig. 1 - Typical Output Characteristics

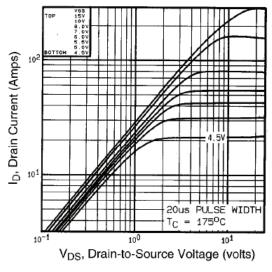


Fig. 2 - Typical Output Characteristics

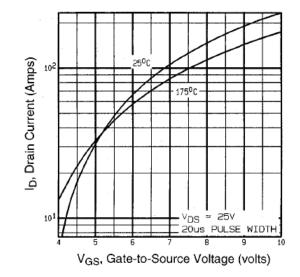


Fig. 3 - Typical Transfer Characteristics

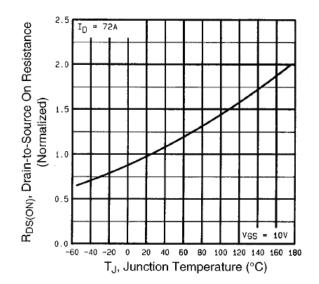


Fig. 4 - Normalized On-Resistance vs. Temperature

AUIRFZ44NL-VB

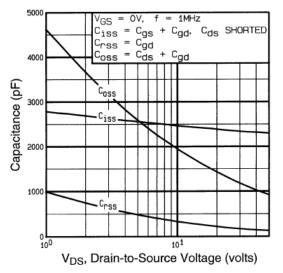


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

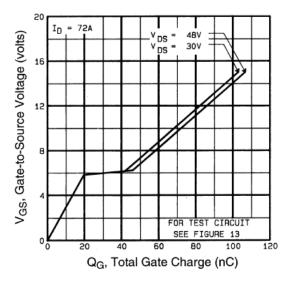
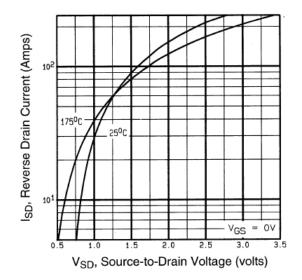



Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

Bsemi

www.VBsemi.com

Fig. 7 - Typical Source-Drain Diode Forward Voltage

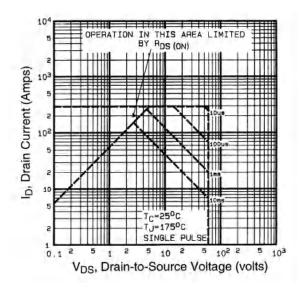


Fig. 8 - Maximum Safe Operating Area

AUIRFZ44NL-VB

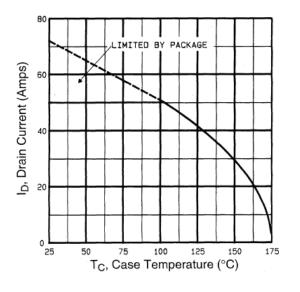


Fig. 9 - Maximum Drain Current vs. Case Temperature

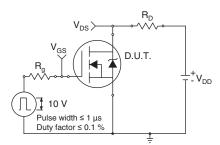


Fig. 10a - Switching Time Test Circuit

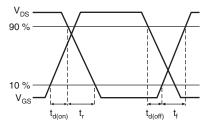
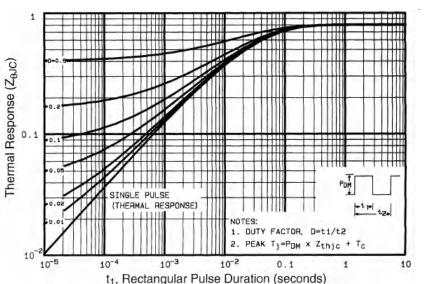



Fig. 10b - Switching Time Waveform

t₁, Rectangular Pulse Duration (seconds) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

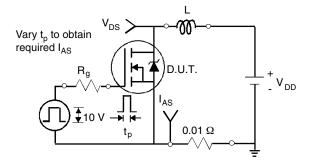


Fig. 12a - Unclamped Inductive Test Circuit

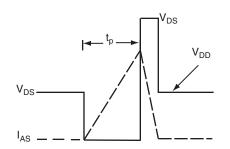


Fig. 12b - Unclamped Inductive Waveforms

AUIRFZ44NL-VB

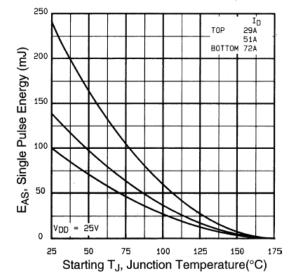


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

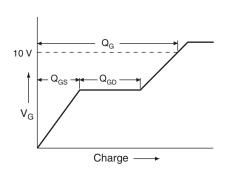


Fig. 13a - Maximum Avalanche Energy vs. Drain Current

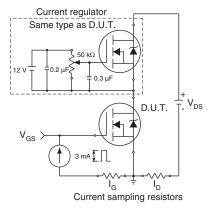
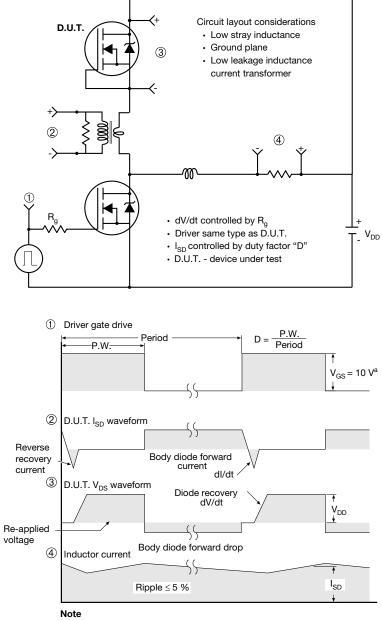
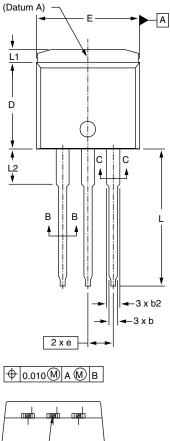



Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit



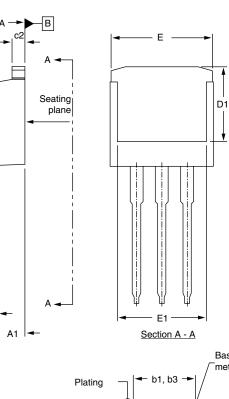

a. V_{GS} = 5 V for logic level devices

Fig. 14 - For N-Channel

I²PAK (TO-262) (HIGH VOLTAGE)

Lead	tip	1

		Base / metal
ating	← b1, b3 →	/
Ť		
c ↓		c1 ↓
<u> </u>	/	
	(b, b2) →	

Section B - B and C - C Scale: None

	MILLIMETERS		INC	HES	
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	
с	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	
c2	1.14	1.65	0.045	0.065	
ECN: S-82442-Rev. A, 27-Oct-08					

	MILLIN	IETERS	INC	HES	
DIM.	MIN.	MAX.	MIN.	MAX.	
D	8.38	9.65	0.330	0.380	
D1	6.86	-	0.270	-	
E	9.65	10.67	0.380	0.420	
E1	6.22	-	0.245	-	
е	2.54	2.54 BSC		0.100 BSC	
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	
L2	3.56	3.71	0.140	0.146	

DWG: 5977 Notes

1. Dimensioning and tolerancing per ASME Y14.5M-1994.

2. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm per side. These dimensions are measured at the outmost extremes of the plastic body.

c → | | →

3. Thermal pad contour optional within dimension E, L1, D1, and E1.

4. Dimension b1 and c1 apply to base metal only.

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.