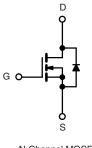

2SK3386-Z-E1-AZ-VB Datasheet N-Channel 60-V (D-S) MOSFET

PRODUCT	SUMMARY	
V _{DS} (V)	r _{DS(on)} (Ω)	I _D (A) ^a
60	0.025 at V _{GS} = 10 V	45
	0.030 at V _{GS} = 4.5 V	40


FEATURES

- Trench Power MOSFET
- 175 °C Junction Temperature

Drain Connected to Tab

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS T _C =	25 °C, unless othe	rwise noted		
Parameter		Symbol	Limit	Unit
Gate-Source Voltage		V _{GS}	± 20	V
Continuous Droin Current /T 175 °CV	T _C = 25 °C	L	45	
Continuous Drain Current $(T_J = 175 \ ^{\circ}C)^{b}$	T _C = 100 °C	I _D	35	
Pulsed Drain Current		I _{DM}	100	A
Continuous Source Current (Diode Conduction)		۱ _S	23	
Avalanche Current		I _{AS}	20	
Single Avalanche Energy (Duty Cycle \leq 1 %)	L = 0.1 mH	E _{AS}	20	mJ
Maximum Davier Diasin stiller	T _C = 25 °C	Р	100	W
Maximum Power Dissipation	T _A = 25 °C	P _D	3 ^a	vv
Operating Junction and Storage Temperature Range	·	T _J , T _{stg}	- 55 to 175	°C

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^a	t ≤ 10 sec	R _{thJA}	18	22	
Maximum Junction-to-Ambient*	Steady State 40 50 °C/W	°C/W			
Maximum Junction-to-Case		R _{thJC}	3.2	4	

Notes:

a. Surface Mounted on 1" x 1" FR4 board, t \leq 10 sec.

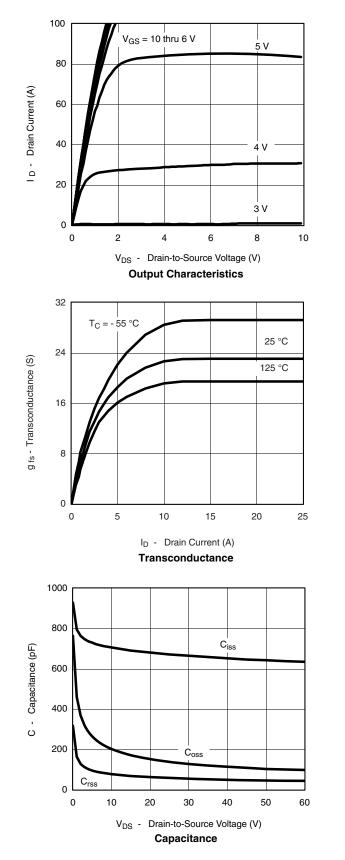
$\begin{tabular}{ c c c c c } \hline Parameter & Symbol & Test Conditions \\ \hline Static \\ \hline Static \\ \hline Drain-Source Breakdown Voltage & V_{(BR)DSS} & V_{GS} = 0 V, I_D = 250 \ \mu A \\ \hline Gate Threshold Voltage & V_{GS(th)} & V_{DS} = V_{GS}, I_D = 250 \ \mu A \\ \hline Gate Body Leakage & I_{GSS} & V_{DS} = 0 V, V_{GS} = \pm 20 \ V \\ \hline Zero Gate Voltage Drain Current & I_{DSS} & V_{DS} = 60 \ V, V_{GS} = 0 \ V, T_J = 125 \ ^C \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, T_J = 125 \ ^C \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, T_J = 175 \ ^C \\ \hline V_{DS} = 60 \ V, V_{GS} = 10 \ V, T_J = 175 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A \\ \hline T_{DS(on)} & V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 125 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 175 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 175 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 175 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 175 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 175 \ ^C \\ \hline V_{GS} = 10 \ V, I_D = 15 \ A, T_J = 175 \ ^C \\ \hline V_{GS} = 15 \ V, I_D = 10 \ A \\ \hline \hline T_{GS} = 10 \ V_{GS} = 15 \ V, I_D = 15 \ A \\ \hline \hline T_{GS} = 10 \ V_{GS} = 15 \ V, I_D = 15 \ A \\ \hline \hline T_{GS} = 10 \ V_{GS} = 15 \ V, I_D = 15 \ A \\ \hline \hline T_{GS} = 10 \ V_{GS} = 15 \ V, I_D = 15 \ A \\ \hline \hline \hline \hline T_{GS} = 10 \ V_{GS} = 15 \ V, I_D = 15 \ A \\ \hline \hline \hline \hline T_{GS} = 10 \ V_{GS} = 15 \ V, I_D = 15 \ A \\ \hline \hline$	Min	Тур ^а	Max	Unit	
$ \begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage & V_{(BR)DSS} & V_{GS} = 0 \ V, \ I_D = 250 \ \mu A \\ \hline Gate Threshold Voltage & V_{GS(th)} & V_{DS} = V_{GS}, \ I_D = 250 \ \mu A \\ \hline Gate-Body Leakage & I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V \\ \hline Zero \ Gate \ Voltage \ Drain \ Current & I_{DSS} & V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C \\ \hline On-State \ Drain \ Current^b & I_{D(on)} & V_{DS} = 5 \ V, \ V_{GS} = 10 \ V \\ \hline Drain-Source \ On-State \ Resistance^b & I_{D(on)} & V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 4.5 \ V, \ I_D = 10 \ A \\ \hline Forward \ Transconductance^b & g_{fs} & V_{DS} = 15 \ V, \ I_D = 15 \ A \\ \hline \end{array}$				•	
$ \begin{array}{c c} Gate Threshold Voltage & V_{GS}(th) & V_{DS} = V_{GS}, I_D = 250 \ \mu\text{A} \\ \hline Gate Threshold Voltage & I_{GSS} & V_{DS} = 0 \ V, V_{GS} = \pm 20 \ V \\ \hline Gate-Body Leakage & I_{GSS} & V_{DS} = 0 \ V, V_{GS} = \pm 20 \ V \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, T_J = 125 \ ^{\circ}\text{C} \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, T_J = 175 \ ^{\circ}\text{C} \\ \hline V_{DS} = 60 \ V, V_{GS} = 0 \ V, T_J = 175 \ ^{\circ}\text{C} \\ \hline V_{GS} = 10 \ V, I_D = 15 \ \text{A} \\ \hline V_{GS} = 10 \ V, I_D = 15 \ \text{A}, T_J = 125 \ ^{\circ}\text{C} \\ \hline V_{GS} = 10 \ V, I_D = 15 \ \text{A}, T_J = 125 \ ^{\circ}\text{C} \\ \hline V_{GS} = 10 \ V, I_D = 15 \ \text{A}, T_J = 125 \ ^{\circ}\text{C} \\ \hline V_{GS} = 4.5 \ V, I_D = 10 \ \text{A} \\ \hline \end{array} $	00				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	60			V	
$ \begin{array}{c c} V_{DS} = 60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 125 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C \\ \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C \\ \hline V_{DS} = 5 \ V, \ V_{GS} = 10 \ V \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 4.5 \ V, \ I_D = 10 \ A \\ \hline Forward \ Transconductance^{b} \ g_{fs} \ V_{DS} = 15 \ V, \ I_D = 15 \ A \\ \hline \end{array} $	1.0	2.0	3.0	Unit V nA μA A Ω S PF nC ns	
$ \begin{array}{c c} \mbox{Zero Gate Voltage Drain Current} & I_{DSS} & \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 125 \ ^{\circ}C & \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C & \hline V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C & \hline V_{DS} = 5 \ V, \ V_{GS} = 10 \ V & \hline V_{GS} = 10 \ V, \ I_D = 15 \ A & \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C & \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C & \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C & \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C & \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 175 \ ^{\circ}C & \hline V_{GS} = 4.5 \ V, \ I_D = 10 \ A & \hline \end{array} $			± 100	nA	
$\begin{tabular}{ c c c c c c } \hline & V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C \\ \hline & V_{DS} = 60 \ V, \ V_{GS} = 0 \ V, \ T_J = 175 \ ^{\circ}C \\ \hline & V_{DS} = 5 \ V, \ V_{GS} = 10 \ V \\ \hline & V_{GS} = 10 \ V, \ I_D = 15 \ A \\ \hline & V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline & V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline & V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 175 \ ^{\circ}C \\ \hline & V_{GS} = 4.5 \ V, \ I_D = 10 \ A \\ \hline & Forward \ Transconductance^b \ g_{fs} \ V_{DS} = 15 \ V, \ I_D = 15 \ A \\ \hline \end{tabular}$			1		
$ \begin{array}{c c} \text{On-State Drain Current}^{b} & I_{D(on)} & V_{DS} = 5 \text{ V}, \text{ V}_{GS} = 10 \text{ V} \\ \\ \text{Drain-Source On-State Resistance}^{b} & \\ P_{DS(on)} & \hline \\ \hline$			50	μA	
$\frac{V_{GS} = 10 \text{ V}, \text{ I}_D = 15 \text{ A}}{V_{GS} = 10 \text{ V}, \text{ I}_D = 15 \text{ A}}$ $\frac{V_{GS} = 10 \text{ V}, \text{ I}_D = 15 \text{ A}, \text{ T}_J = 125 ^{\circ}\text{C}}{V_{GS} = 10 \text{ V}, \text{ I}_D = 15 \text{ A}, \text{ T}_J = 175 ^{\circ}\text{C}}$ $\frac{V_{GS} = 4.5 \text{ V}, \text{ I}_D = 10 \text{ A}}{V_{GS} = 4.5 \text{ V}, \text{ I}_D = 15 \text{ A}}$			250		
Drain-Source On-State Resistance ^b $r_{DS(on)}$ $V_{GS} = 10 \text{ V}, \text{ I}_D = 15 \text{ A}, \text{ T}_J = 125 ^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, \text{ I}_D = 15 \text{ A}, \text{ T}_J = 175 ^{\circ}\text{C}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_D = 15 \text{ A}, \text{ T}_J = 175 ^{\circ}\text{C}$ Forward Transconductance ^b g_{fs} $V_{DS} = 15 \text{ V}, \text{ I}_D = 15 \text{ A}$	50			Α	
$\begin{tabular}{ c c c c c c } \hline Drain-Source On-State Resistance^{D} & $r_{DS(on)}$ & $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 15 \text{ A}, \text{ T}_{J} = 175 \ ^{\circ}\text{C}$ & $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$ & $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10 \text{ A}$ & $V_{DS} = 15 \text{ V}, \text{ I}_{D} = 15 \text{ A}$ & $V_{DS} = 15 \text{ V}$ & $V_{DS} = 15 $		0.025			
$\frac{V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}, I_J = 175 \text{ °C}}{V_{GS} = 4.5 \text{ V}, I_D = 10 \text{ A}}$ Forward Transconductance ^b g_{fs} $V_{DS} = 15 \text{ V}, I_D = 15 \text{ A}$		0.055			
Forward Transconductance ^b g_{fs} $V_{DS} = 15 V$, $I_D = 15 A$		0.069			
		0.030			
Dynamic ^a		20		S	
Input Capacitance C _{iss}		1500			
Output Capacitance C_{oss} $V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz$		140		pF	
Reverse Transfer Capacitance C _{rss}		60			
Total Gate Charge ^c Q _g		11	17		
Gate-Source Charge ^c Q_{gs} $V_{DS} = 30 V$, $V_{GS} = 10 V$, $I_D = 23 A$		3		nC	
Gate-Drain Charge ^c Q _{gd}		3			
Turn-On Delay Time ^c t _{d(on)}		8	15		
Rise Time ^c t_r $V_{DD} = 30 \text{ V}, \text{ R}_L = 1.3 \Omega$		15	25	ns	
Turn-Off Delay Time ^c $t_{d(off)}$ $I_D \cong 23$ A, $V_{GEN} = 10$ V, $R_g = 2.5 \Omega$		30	45		
Fall Time ^c t _f		25	40		
Source-Drain Diode Ratings and Characteristics $(T_C = 25 \degree C)$					
Pulsed Current I _{SM}			50	А	
Diode Forward Voltage V_{SD} $I_F = 15 \text{ A}, V_{GS} = 0 \text{ V}$		1.0	1.5	V	
Reverse Recovery Time t_{rr} $I_F = 15 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		I			

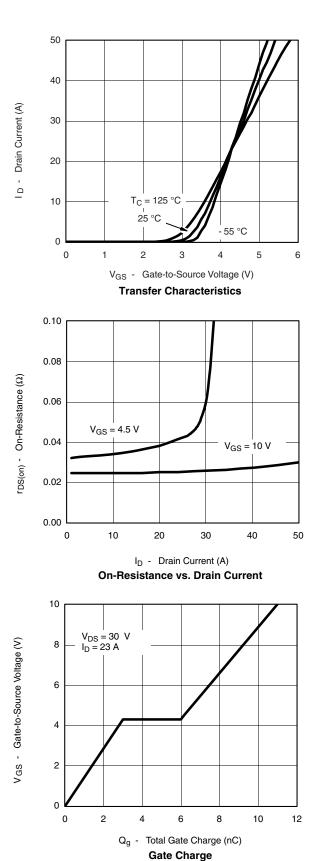
Notes:

a. For design aid only; not subject to production testing.

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

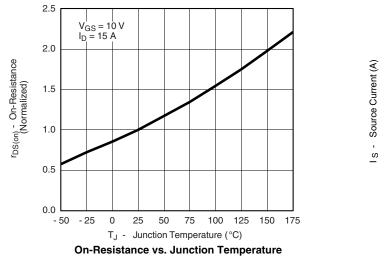
c. Independent of operating temperature.

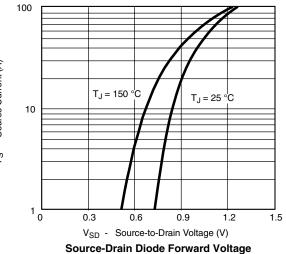

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


emi

www.VBsemi.com

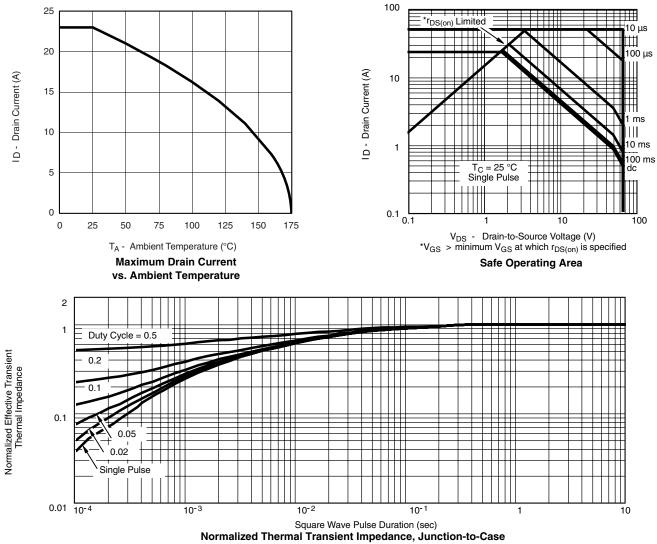
TYPICAL CHARACTERISTICS 25 °C unless noted



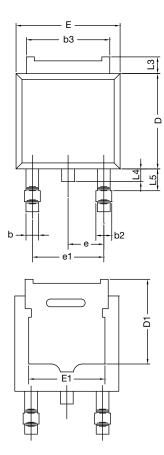


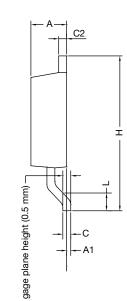
服务热线:400-655-8788

TYPICAL CHARACTERISTICS 25 °C unless noted

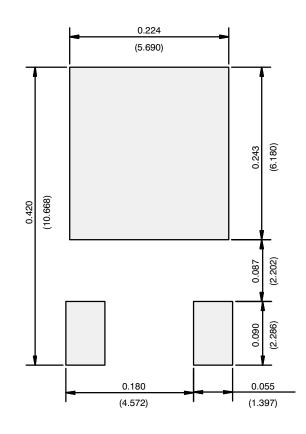


2SK3386-Z-E1-AZ-VB




THERMAL RATINGS

TO-252AA CASE OUTLINE


	MILLIN	IETERS	INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	2.18	2.38	0.086	0.094	
A1	-	0.127	-	0.005	
b	0.64	0.88	0.025	0.035	
b2	0.76	1.14	0.030	0.045	
b3	4.95	5.46	0.195	0.215	
С	0.46	0.61	0.018	0.024	
C2	0.46	0.89	0.018	0.035	
D	5.97	6.22	0.235	0.245	
D1	5.21	-	0.205	-	
Е	6.35	6.73	0.250	0.265	
E1	4.32	-	0.170	-	
Н	9.40	10.41	0.370	0.410	
е	2.28	BSC	0.090 BSC		
e1	4.56	BSC	0.180 BSC		
L	1.40	1.78	0.055	0.070	
L3	0.89	1.27	0.035	0.050	
L4	-	1.02	-	0.040	
L5	1.14	1.52	0.045	0.060	
ECN: X12- DWG: 534	0247-Rev. M, 7	24-Dec-12			

Note

• Dimension L3 is for reference only.

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.