

05N03LB-VB Datasheet N-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^{a, e}	Q _g (Typ)		
30	0.002 at V _{GS} = 10 V	100	72 nC		
- 50	0.003 at V _{GS} = 4.5 V	90	72110		

N-Channel MOSFET

FEATURES

- ٠ Trench Power MOSFET
- 100 % R_g and UIS Tested
- Compliant to RoHS Directive 2011/65/EU ٠

APPLICATIONS

- OR-ing
- Server
- DC/DC

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V		
Gate-Source Voltage		V _{GS}	± 20	v	
	T _C = 25 °C		100 ^{a, e}	A	
Continuous Drain Current (T _J = 175 °C)	T _C = 70 °C		80 ^e		
$Continuous Drain Current (1_j = 175 C)$	T _A = 25 °C	I _D	35.8 ^{b, c}		
	T _A = 70 °C		27 ^{b, c}		
Pulsed Drain Current	I _{DM}	300	_		
Avalanche Current Pulse	L = 0.1 mH	I _{AS}	39		
Single Pulse Avalanche Energy	L = 0.1 mm	E _{AS}	94.8	mJ	
Continuous Source-Drain Diode Current	T _C = 25 °C		90 ^{a, e}	A	
Continuous Source-Drain Diode Current	T _A = 25 °C	I _S	3.13 ^{b, c}		
	T _C = 25 °C		235 ^a		
Mauiauna Daura Diasia stian	T _C = 70 °C	P	165		
Maximum Power Dissipation	T _A = 25 °C	P _D	3.75 ^{b, c}	W	
	T _A = 70 °C		2.63 ^{b, c}		
Operating Junction and Storage Temperature Ra	ange	T _J , T _{stg}	- 55 to 175	°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Тур.	Max.	Unit	
Maximum Junction-to-Ambient ^{b, d}	$t \le 10 \text{ sec}$	R _{thJA}	32	40	°C/W	
Maximum Junction-to-Case	Steady State	R _{thJC}	0.5	0.6	0/10	

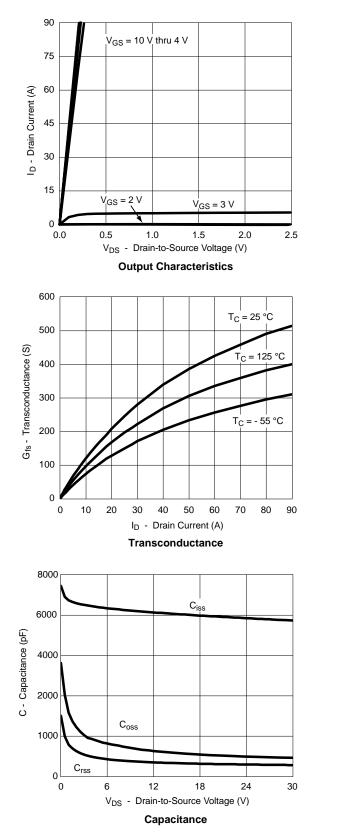
Notes:

a. Based on $T_C = 25 \text{ °C}$. b. Surface mounted on 1" x 1" FR4 board.

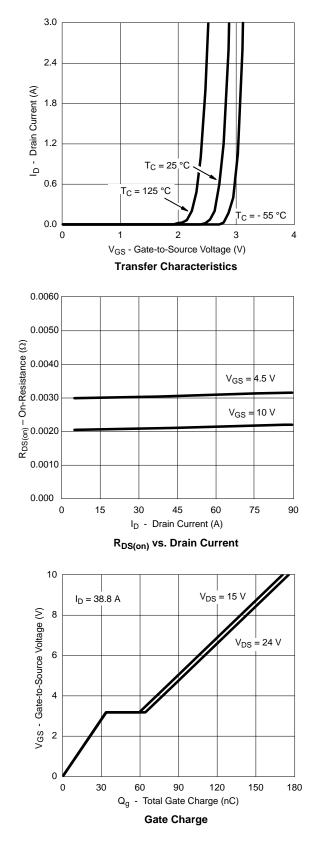
a. t = 10 sec.
d. Maximum under steady state conditions is 90 °C/W.
e. Calculated based on maximum junction temperature. Package limitation current is 90 A.

	SPECIFICATIONS (T _J = 25 °C,				-	_ _	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V	V 0.V 1 250 ··· 4			1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6		$v_{GS} = 0 v, I_D = 250 \mu A$	30	0.5		V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			I _D = 250 μA				mV/°
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $. ,			- 7.5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5			1.5		2.5	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}				± 100	nA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zero Gate Voltage Drain Current	loss	50 00			1	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-033				10	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	On-State Drain Current ^a	I _{D(on)}		90			Α
$ \begin{array}{ c c c c c } \hline V_{GS} = 4.5 \ V, \ v_{DS} = 37 \ A \\ \hline 0.003 $	Drain Source On State Desistence	Base	V _{GS} = 10 V, I _D = 38.8 A	0.002			0
	Drain-Source On-State Resistance-	''DS(on)	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 37 \text{ A}$		0.003		52
$ \begin{array}{ c c c c c c c } \hline Input Capacitance & C_{IBS} \\ \hline Output Capacitance & C_{GSS} \\ \hline Output Capacitance & C_{rss} \\ \hline Output Cap$	Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 38.8 A		160		S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}			5201		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz		1525		pF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			770		
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Tatal Oats Observe	0	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 38.8 \text{ A}$		151	227	3
$ \begin{array}{ c c c c c } \hline Gate-Source Charge & $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	Total Gate Charge	Qg			71.5	103	
$ \begin{array}{c c c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ MHz & 1.4 & 2.1 & \Omega \\ \hline Turn-On Delay Time & t_d(on) & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge	Q _{gs}	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 28.8 A		30		
$ \begin{array}{c c c c c c c c c c } \hline Turn-On Delay Time & t_{d(on)} \\ \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 0.625 \ \Omega & 11 & 17 \\ \hline I_D \equiv 24 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 70 & 105 \\ \hline I_D \equiv 24 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 70 & 105 \\ \hline I_D \equiv 24 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 70 & 105 \\ \hline Turn-On Delay Time & t_f & 10 & 15 \\ \hline Turn-On Delay Time & t_r & V_{DD} = 15 \ V, \ R_L = 0.67 \ \Omega & 180 & 270 \\ \hline I_D \equiv 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 55 & 83 \\ \hline Fall Time & t_f & 12 & 18 \\ \hline \hline Drain-Source Body Diode Characteristics & & & & & \\ \hline Drain-Source Body Diode Characteristics & & & & & & & & \\ \hline Continuous Source-Drain Diode Current & I_S & T_C = 25 \ C & & & & & & & & & & & & \\ \hline Pulse Diode Forward Current^a & I_{SM} & & & & & & & & & & & & \\ \hline Body Diode Reverse Recovery Time & t_r & & & & & & & & & & & & & \\ \hline Body Diode Reverse Recovery Charge & Q_{rr} & & & & & & & & & & & & & \\ \hline Reverse Recovery Fall Time & t_a & & & & & & & & & & & & & & & \\ \hline \end{array}$	Gate-Drain Charge	Q _{gd}			24		
$\begin{array}{ c c c c c } \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 0.625 \ \Omega & 11 & 17 \\ \hline I_D \cong 24 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 24 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 24 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 22 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 22 \ S \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 55 & 83 \\ \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 55 & 83 \\ \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 12 \\ \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 12 \\ \hline \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline \hline \hline \hline \hline I_D \cong Diode \ Forward \ Current^a \ I_S \$	Gate Resistance	R _g	f = 1 MHz		1.4	2.1	Ω
$\begin{array}{ c c c c c } \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 0.625 \ \Omega & 11 & 17 \\ \hline I_D \cong 24 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 24 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 24 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 22 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 15 \\ \hline I_D \cong 22 \ S \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 55 & 83 \\ \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 55 & 83 \\ \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 12 \\ \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 12 \\ \hline \hline \hline \hline I_D \cong 22.5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 12 & 18 \\ \hline \hline \hline \hline \hline \hline I_D \cong Diode \ Forward \ Current^a \ I_S \$	Turn-On Delay Time	t _{d(on)}			18	27	
$ \begin{array}{c c c c c c c c c c c c } \hline Turn-Off Delay Time & t_{d(off)} & I_D \cong 24 \text{ A}, \ V_{GEN} = 10 \text{ V}, \ R_g = 1 \Omega & 70 & 105 \\ \hline Turn-On Delay Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Rise Time		$V_{DD} = 15 \text{ V}, \text{ R}_{1} = 0.625 \Omega$		11	17	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 24 \text{ A}, \text{ V}_{\text{GEN}} = 10 \text{ V}, \text{ R}_{\text{g}} = 1 \Omega$		70	105	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	. ,			10	15	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			55	83	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time		V _{DD} = 15 V, R _I = 0.67 Ω		180	270	
Fall Time t_f 1218Drain-Source Body Diode Characteristics t_f 1218Drain-Source Body Diode Characteristics $T_C = 25 ^{\circ}C$ 120 A Continuous Source-Drain Diode Current I_S $T_C = 25 ^{\circ}C$ 120 A Pulse Diode Forward Current ^a I_{SM} 120 A Body Diode Voltage V_{SD} $I_S = 22 ^{A}$ 0.8 1.2 V Body Diode Reverse Recovery Time t_{rr} $F_r = 20 ^{A}$, di/dt = 100 A/\mus , $T_J = 25 ^{\circ}C$ 70.2 105 nC Reverse Recovery Fall Time t_a T_a 27 ns ns	Turn-Off Delay Time				55	83	-
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIs $T_C = 25 \text{ °C}$ 120Pulse Diode Forward Current ^a IsM120ABody Diode Voltage V_{SD} $I_S = 22 \text{ A}$ 0.81.2VBody Diode Reverse Recovery Time t_{rr} 52 78nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 20 \text{ A}$, di/dt = 100 A/µs, $T_J = 25 \text{ °C}$ 70.2105nCReverse Recovery Fall Time t_a T_a T_{rr} T_{rr} T_{rr} T_{rr}			- 9				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Body Diode Characteristic				I		
Pulse Diode Forward Current ^a Ism120ABody Diode Voltage V_{SD} $I_S = 22 \text{ A}$ 0.81.2VBody Diode Reverse Recovery Time t_{rr} 5278nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 20 \text{ A}$, di/dt = 100 A/µs, $T_J = 25 \text{ °C}$ 70.2105nCReverse Recovery Fall Time t_a t_a 27 ns	Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			120	
Body Diode Voltage V_{SD} $I_S = 22 \text{ A}$ 0.81.2VBody Diode Reverse Recovery Time t_{rr} 5278nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 20 \text{ A}, di/dt = 100 \text{ A/µs}, T_J = 25 °C$ 70.2105nCReverse Recovery Fall Time t_a r_a r_a r_a r_a r_a r_a	Pulse Diode Forward Current ^a				1	120	A
Body Diode Reverse Recovery Time t_{rr} 5278nsBody Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a			I _S = 22 A		0.8		V
Body Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a	, 0		-				ns
Reverse Recovery Fall Time t_a $I_F = 20 \text{ A}, dl/dt = 100 \text{ A}/\mu\text{s}, I_J = 25 \text{ °C}$ 27 ns							
ns ns			$I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$	-			
	Reverse Recovery Rise Time	t _b			25		ns

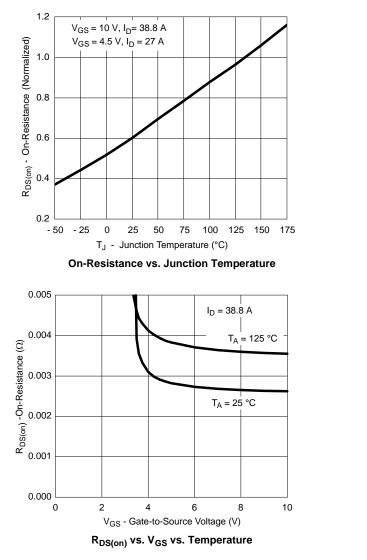
Notes:

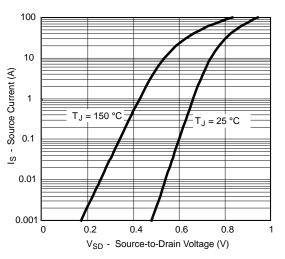

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

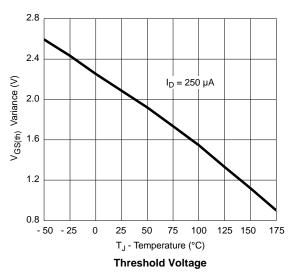
b. Guaranteed by design, not subject to production testing.

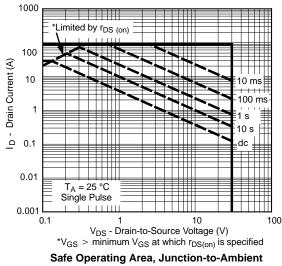

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

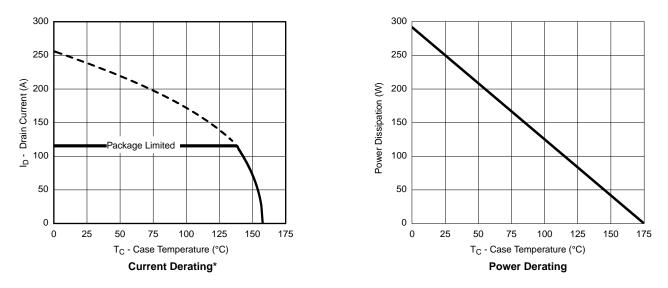
Bsemi



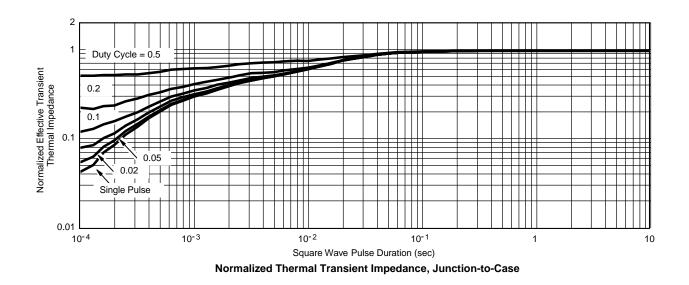

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

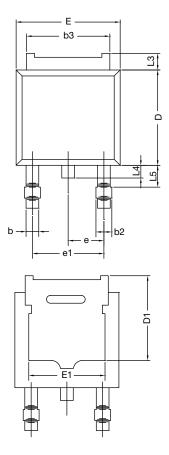


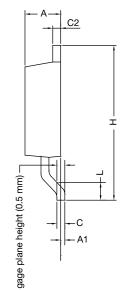




Forward Diode Voltage vs. Temperature




TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


*The power dissipation P_D is based on $T_{J(max)} = 175$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

TO-252AA CASE OUTLINE

	MILLIN	IETERS	INC	HES	
DIM.	MIN.	MAX.	MIN.	MAX.	
А	2.18	2.38	0.086	0.094	
A1	-	0.127	-	0.005	
b	0.64	0.88	0.025	0.035	
b2	0.76	1.14	0.030	0.045	
b3	4.95	5.46	0.195	0.215	
С	0.46	0.61	0.018	0.024	
C2	0.46	0.89	0.018	0.035	
D	5.97	6.22	0.235	0.245	
D1	5.21	-	0.205	-	
Е	6.35	6.73	0.250	0.265	
E1	4.32	-	0.170	-	
Н	9.40	10.41	0.370	0.410	
е	2.28	BSC	0.090 BSC		
e1	4.56	BSC	0.180 BSC		
L	1.40	1.78	0.055	0.070	
L3	0.89	1.27	0.035	0.050	
L4	-	1.02	-	0.040	
L5	1.14	1.52	0.045	0.060	
ECN: X12- DWG: 534	0247-Rev. M, 7	24-Dec-12			

Note

• Dimension L3 is for reference only.

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.