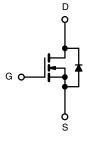


## FP4332-203-VB Datasheet N-Channel 250 V (D-S) 175 °C MOSFET

| PRODUCT SUMMARY     |                                        |                    |                      |  |
|---------------------|----------------------------------------|--------------------|----------------------|--|
| V <sub>DS</sub> (V) | <b>R<sub>DS(on)</sub> (</b> Ω <b>)</b> | I <sub>D</sub> (A) | Q <sub>g</sub> (Тур) |  |
| 250                 | 0.040 at V <sub>GS</sub> = 10 V        | 60                 | 95                   |  |
| 230                 | 0.045 at V <sub>GS</sub> = 6 V         | 55                 | 90                   |  |

#### FEATURES


- Trench Power MOSFETS
- 175 °C Junction Temperature
- New Low Thermal Resistance Package
- Compliant to RoHS Directive 2002/95/EC

#### **APPLICATIONS**

Industrial



Top View



N-Channel MOSFET

| <b>ABSOLUTE MAXIMUM RATINGS</b> ( $T_c = 25$ °C, unless otherwise noted) |                                     |                                   |                  |    |      |  |
|--------------------------------------------------------------------------|-------------------------------------|-----------------------------------|------------------|----|------|--|
| Parameter                                                                | Symbol                              | Limit                             | Unit             |    |      |  |
| Drain-Source Voltage                                                     | V <sub>DS</sub>                     | 250                               | V                |    |      |  |
| Gate-Source Voltage                                                      |                                     | V <sub>GS</sub>                   |                  |    | ± 30 |  |
| Continuous Drain Current (T <sub>.1</sub> = 175 °C)                      | T <sub>C</sub> = 25 °C              | 1_                                | 60               | А  |      |  |
| Continuous Drain Current $(1) = 175^{\circ}$ C)                          | T <sub>C</sub> = 125 °C             |                                   | 35               |    |      |  |
| Pulsed Drain Current                                                     | I <sub>DM</sub>                     | 200                               | A                |    |      |  |
| Avalanche Current                                                        | I <sub>AR</sub>                     | 35                                |                  |    |      |  |
| Repetitive Avalanche Energy <sup>a</sup>                                 | L = 0.1 mH                          | E <sub>AR</sub>                   | 61               | mJ |      |  |
|                                                                          | T <sub>C</sub> = 25 °C              | Р                                 | 300 <sup>b</sup> | w  |      |  |
| Maximum Power Dissipation <sup>a</sup>                                   | T <sub>A</sub> = 25 °C <sup>c</sup> | – P <sub>D</sub> –                | 3.75             |    |      |  |
| Operating Junction and Storage Temperature Range                         |                                     | T <sub>J</sub> , T <sub>stg</sub> | - 55 to 175      | °C |      |  |

| THERMAL RESISTANCE RATINGS                   |                   |       |      |  |  |
|----------------------------------------------|-------------------|-------|------|--|--|
| Parameter                                    | Symbol            | Limit | Unit |  |  |
| Junction-to-Ambient (PCB Mount) <sup>c</sup> | R <sub>thJA</sub> | 40    | °C/W |  |  |
| Junction-to-Case (Drain)                     | R <sub>thJC</sub> | 0.5   | °C/W |  |  |

Notes:

a. Duty cycle  $\leq$  1 %.

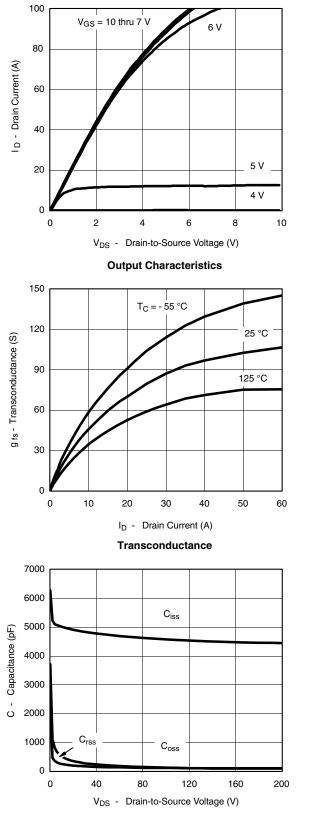
b. See SOA curve for voltage derating.

c. When mounted on 1" square PCB (FR-4 material).

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>SPECIFICATIONS</b> ( $T_J = 25$    | °C, unless c         | otherwise noted)                                                                             |       |       |       |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|----------------------------------------------------------------------------------------------|-------|-------|-------|------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameter                             | Symbol               | Test Conditions                                                                              | Min . | Тур.  | Max.  | Unit |
| Gate Threshold Voltage         VGS(th)         VDS = VGS, ID = 250 µA         2         4         V           Gate-Body Leakage         IGSS         VDS = 0 V, VGS = ± 30 V         ± 250         nA           Gate-Body Leakage         IGSS         VDS = 0 V, VGS = ± 30 V         ± 250         nA           Zero Gate Voltage Drain Current         IDSS         VDS = 250 V, VGS = 0 V         1         µA           On-State Drain Current <sup>a</sup> ID(0)         VDS = 250 V, VGS = 0 V, TJ = 125 °C         50         µA           Drain-Source On-State Resistance <sup>a</sup> PDS(on)         VGS = 10 V, ID = 30 A         0.040         µA           VGS = 10 V, ID = 30 A, TJ = 175 °C         0.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Static                                | •                    |                                                                                              |       |       |       |      |
| $ \begin{array}{c c c c c c } \mbox{Gate Threshold Voltage} & V_{GS}(m) & V_{GS} = V_{SS}, h_{O} = 250 \mu A & 2 & 4 \\ \hline \mbox{Gate Threshold Voltage} & I_{GSS} & V_{DS} = 0 V, V_{GS} = 30 V & 1 & 1 \\ \hline \mbox{V}_{DS} = 250 V, V_{GS} = 0 V, T_{J} = 125 °C & 0 & 250 \\ \hline \mbox{V}_{DS} = 250 V, V_{GS} = 0 V, T_{J} = 125 °C & 0 & 250 \\ \hline \mbox{V}_{DS} = 250 V, V_{GS} = 0 V, T_{J} = 175 °C & 0 & 250 \\ \hline \mbox{V}_{DS} = 250 V, V_{GS} = 10 V & 70 & A \\ \hline \mbox{V}_{DS} = 250 V, V_{GS} = 10 V & 70 & 0 & A \\ \hline \mbox{V}_{DS} = 10 V, I_{D} = 30 A & T_{J} = 125 °C & 0.091 & 0 \\ \hline \mbox{V}_{GS} = 10 V, I_{D} = 30 A, T_{J} = 175 °C & 0.091 & 0 \\ \hline \mbox{V}_{GS} = 10 V, I_{D} = 30 A, T_{J} = 175 °C & 0.091 & 0 \\ \hline \mbox{V}_{GS} = 10 V, I_{D} = 30 A, T_{J} = 175 °C & 0.091 & 0 \\ \hline \mbox{V}_{GS} = 0 V, V_{DS} = 15 V, I_{D} = 30 A & 70 & 0 & S \\ \hline \mbox{Dyname}^{b} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drain-Source Breakdown Voltage        | V <sub>DS</sub>      | $V_{DS} = 0 V, I_{D} = 250 \mu A$                                                            | 250   |       |       | V    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gate Threshold Voltage                | V <sub>GS(th)</sub>  | $V_{DS} = V_{GS}, I_D = 250 \ \mu A$                                                         | 2     |       | 4     | v    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gate-Body Leakage                     | I <sub>GSS</sub>     | $V_{DS}$ = 0 V, $V_{GS}$ = ± 30 V                                                            |       |       | ± 250 | nA   |
| $\begin{tabular}{ c c c c c c } \hline $V_{DS}$ = $250 V, $V_{GS}$ = 0 V, $T_J$ = $175 °C$ & $250$ & $A$ \\ \hline $V_{DS}$ = $250 V, $V_{GS}$ = $10 V$ & $70$ & $A$ \\ \hline $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ & $0.040$ & $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ & $0.040$ & $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ & $0.040$ & $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ & $0.040$ & $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ & $0.045$ & $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ , $T_{J}$ = $125 °C$ & $0.091$ & $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ & $70$ & $S$ \\ \hline $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ & $70$ & $S$ & $D$ \\ \hline $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ & $70$ & $S$ & $D$ \\ \hline $V_{GS}$ = $10 V, $I_{D}$ = $30 A$ & $70$ & $S$ & $D$ \\ \hline $V_{GS}$ = $0 V, $V_{DS}$ = $15 V, $I_{D}$ = $30 A$ & $70$ & $S$ & $D$ \\ \hline $D$ uput Capacitance & $C_{iss}$ & $V_{GS}$ = $0 V, $V_{DS}$ = $25 V, $f$ = $1 MHz$ & $300$ & $P$ & $P$ & $140$ & $0$ \\ \hline $Cate Drain Charge^{C} & $Q_{g}$ & $V_{DS}$ = $125 V, $V_{GS}$ = $10 V, $I_{D}$ = $45 A$ & $28$ & $n$ & $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                      | $V_{DS} = 250 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$                                       |       |       | 1     | μΑ   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zero Gate Voltage Drain Current       | I <sub>DSS</sub>     | $V_{DS} = 250 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$ |       |       | 50    |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                      | $V_{DS} = 250 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 175 ^{\circ}\text{C}$ |       |       | 250   |      |
| $ \begin{array}{ c c c c c c } \mbox{Prime} Prime$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | On-State Drain Current <sup>a</sup>   | I <sub>D(on)</sub>   | $V_{DS} \ge 5 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$                                      | 70    |       |       | А    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                      | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 30 A                                                |       | 0.040 |       | - Ω  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Р                    | $V_{GS}$ = 10 V, I <sub>D</sub> = 30 A, T <sub>J</sub> = 125 °C                              |       | 0.091 |       |      |
| Forward Transconductance <sup>a</sup> $g_{fs}$ $V_{DS} = 15$ V, $I_D = 30$ A         70         S           Dynamic <sup>b</sup> $V_{DS} = 15$ V, $I_D = 30$ A         70         S           Input Capacitance $C_{iss}$ $V_{GS} = 0$ V, $V_{DS} = 25$ V, $f = 1$ MHz $5000$ $pF$ Output Capacitance $C_{css}$ $V_{GS} = 0$ V, $V_{DS} = 25$ V, $f = 1$ MHz $300$ $pF$ Reverse Transfer Capacitance $C_{rss}$ $V_{DS} = 125$ V, $V_{GS} = 10$ V, $I_D = 45$ A $28$ $nC$ Gate-Source Charge <sup>c</sup> $Q_{gd}$ $f = 1$ MHz $1.6$ $\Omega$ Gate Resistance $R_g$ $f = 1$ MHz $1.6$ $\Omega$ Turn-On Delay Time <sup>c</sup> $t_f$ $V_{DD} = 100$ V, $R_I = 2.78 \Omega$ $222$ $330$ $ns$ Rise Time <sup>c</sup> $t_f$ $V_{DD} = 100$ V, $R_g = 2.5 \Omega$ $400$ $60$ $ns$ Source-Drain Diode Ratings and Characteristics ( $T_C = 25$ °C) <sup>b</sup> $45$ $A$ $A$ Continuous Current $I_S$ $I_F = 45$ A, $V_{GS} = 0$ V $1$ $1.5$ $V$ Pulsed Current $I_S$ $I_F = 45$ A, $di/dt = 100$ A/ $\mu$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drain-Source On-State Resistance      | DS(on)               | $V_{GS}$ = 10 V, I <sub>D</sub> = 30 A, T <sub>J</sub> = 175 °C                              |       | 0.123 |       |      |
| Dynamic <sup>b</sup> Source         Ciss         Source         Sour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                      | $V_{GS} = 6 V, I_D = 25 A$                                                                   |       | 0.045 |       |      |
| $ \begin{array}{ c c c c c c } \hline \text{Input Capacitance} & C_{1SS} & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Forward Transconductance <sup>a</sup> | 9 <sub>fs</sub>      | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 30 A                                                |       | 70    |       | S    |
| $ \begin{array}{c c c c c c c c } \hline Output Capacitance & C_{oss} & V_{GS} = 0 \ V, \ V_{DS} = 25 \ V, \ f = 1 \ MHz & 300 & 1 \\ \hline 0 \ 170 & 1 \\ \hline 180 & 1 \\ \hline 180$ | Dynamic <sup>b</sup>                  | •                    | •                                                                                            |       | ÷     |       |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Input Capacitance                     | C <sub>iss</sub>     |                                                                                              |       | 5000  |       | pF   |
| $ \begin{array}{c c c c c c c c c } \hline Total Gate Charge^{c} & Q_{g} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Output Capacitance                    | C <sub>oss</sub>     | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 25 V, f = 1 MHz                                     |       | 300   |       |      |
| Gate-Source Charge <sup>c</sup> $Q_{gs}$ $V_{DS} = 125 V$ , $V_{GS} = 10 V$ , $I_D = 45 A$ 28         nC           Gate-Drain Charge <sup>c</sup> $Q_{gd}$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$ $34$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reverse Transfer Capacitance          | C <sub>rss</sub>     |                                                                                              |       | 170   |       |      |
| $ \begin{array}{c c c c c c c c c c } \hline Gate-Drain Charge^{\circ} & Q_{gd} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Gate Charge <sup>c</sup>        | Qg                   |                                                                                              |       | 95    | 140   | nC   |
| $ \begin{array}{c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ MHz & 1.6 & \Omega \\ \hline Turn-On Delay Time^{C} & t_{d(on)} \\ \hline Rise Time^{C} & t_r & V_{DD} = 100 \ V, \ R_L = 2.78 \ \Omega \\ \hline I_D \cong 45 \ A, \ V_{GEN} = 10 \ V, \ R_g = 2.5 \ \Omega \\ \hline I_D \cong 45 \ A, \ V_{GEN} = 10 \ V, \ R_g = 2.5 \ \Omega \\ \hline I_1 I Time^{C} & t_f & 145 \ 220 \\ \hline Source-Drain Diode Ratings and Characteristics (T_C = 25 \ ^{\circ}C)^{b} \\ \hline Continuous \ Current & I_S & 40 & 60 \\ \hline Pulsed \ Current & I_{SM} & 70 \\ \hline Forward \ Voltage^{a} & V_{SD} & I_F = 45 \ A, \ V_{GS} = 0 \ V & 1 & 1.5 & V \\ \hline Reverse \ Recovery \ Time & t_{rr} & 150 \ 225 \ ns \\ \hline Peak \ Reverse \ Recovery \ Current & I_{RM(REC)} & I_F = 45 \ A, \ di/dt = 100 \ A/\mus & 12 \ 18 \ A \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gate-Source Charge <sup>c</sup>       | Q <sub>gs</sub>      | $V_{DS}$ = 125 V, $V_{GS}$ = 10 V, $I_{D}$ = 45 A                                            |       | 28    |       |      |
| $ \begin{array}{c c c c c c c c c } \hline Turn-On \ Delay \ Time^{C} & t_{d(on)} \\ \hline Rise \ Time^{C} & t_{r} \\ \hline Turn-Off \ Delay \ Time^{C} & t_{d(off)} \\ \hline Turn-Off \ Delay \ Time^{C} & t_{d(off)} \\ \hline Fall \ Time^{C} & t_{f} \\ \hline \end{array} & \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gate-Drain Charge <sup>c</sup>        | Q <sub>gd</sub>      |                                                                                              |       | 34    |       |      |
| $\begin{array}{c c c c c c c } \hline \text{Rise Time}^{C} & \text{tr} \\ \hline \text{Turn-Off Delay Time}^{C} & t_{d(off)} \\ \hline \text{Fall Time}^{C} & t_{f} \\ \hline \text{Source-Drain Diode Ratings and Characteristics } (T_{C} = 25 \ ^{\circ}\text{C})^{b} \\ \hline \text{Continuous Current} & l_{S} \\ \hline \text{Pulsed Current} & l_{SM} \\ \hline \text{Forward Voltage}^{a} & V_{SD} & l_{F} = 45 \ \text{A}, \ V_{GS} = 0 \ \text{V} \\ \hline \text{Reverse Recovery Time} & t_{rr} \\ \hline \text{Peak Reverse Recovery Current} & l_{\text{RM}(\text{REC})} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & l_{\text{RM}(\text{REC})} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} & \text{Reverse Recovery Current} \\ \hline \text{Reverse Recovery Current} \\ \hline Reverse Reco$                                                                                                                                                                                                                                                                                                                                                                                                         | Gate Resistance                       | Rg                   | f = 1 MHz                                                                                    |       | 1.6   |       | Ω    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turn-On Delay Time <sup>c</sup>       | t <sub>d(on)</sub>   |                                                                                              |       | 22    | 35    |      |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rise Time <sup>c</sup>                |                      | $V_{DD}$ = 100 V, $R_L$ = 2.78 $\Omega$                                                      |       | 220   | 330   | ns - |
| Source-Drain Diode Ratings and Characteristics $(T_C = 25 \ ^{\circ}C)^b$ Continuous CurrentIs45Pulsed CurrentIs70Forward Voltage <sup>a</sup> $V_{SD}$ I <sub>F</sub> = 45 A, $V_{GS} = 0 \ V$ 1Reverse Recovery Time $t_{rr}$ 150225nsPeak Reverse Recovery CurrentI <sub>RM(REC)</sub> I <sub>F</sub> = 45 A, di/dt = 100 A/µs1218A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turn-Off Delay Time <sup>c</sup>      | t <sub>d(off)</sub>  | $I_D \cong 45$ A, $V_{GEN}$ = 10 V, $R_g$ = 2.5 $\Omega$                                     |       | 40    | 60    |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fall Time <sup>c</sup>                | t <sub>f</sub>       |                                                                                              |       | 145   | 220   |      |
| Pulsed Current         I <sub>SM</sub> 70         A           Forward Voltage <sup>a</sup> $V_{SD}$ $I_F = 45 \text{ A}, V_{GS} = 0 \text{ V}$ 1         1.5         V           Reverse Recovery Time $t_{rr}$ 150         225         ns           Peak Reverse Recovery Current $I_{RM(REC)}$ $I_F = 45 \text{ A}, di/dt = 100 \text{ A}/\mu s$ 12         18         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source-Drain Diode Ratings and Cha    | aracteristics (      | $T_{\rm C} = 25 \ {}^{\circ}{\rm C})^{\rm b}$                                                |       |       |       |      |
| Pulsed CurrentI<br>SMToToForward VoltageaV<br>SDI<br>F=45 A, V<br>GS = 0 V11.5VReverse Recovery Time $t_{rr}$ 150225nsPeak Reverse Recovery CurrentI<br>RM(REC)I<br>F=45 A, di/dt = 100 A/µs1218A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Continuous Current                    | ا <sub>S</sub>       |                                                                                              |       |       | 45    | ^    |
| Reverse Recovery Time $t_{rr}$ 150225nsPeak Reverse Recovery Current $I_{RM(REC)}$ $I_F = 45 \text{ A}, di/dt = 100 \text{ A/}\mu\text{s}$ 1218A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pulsed Current                        | I <sub>SM</sub>      |                                                                                              |       |       | 70    |      |
| Peak Reverse Recovery CurrentI<br>RM(REC)I<br>F = 45 A, di/dt = 100 A/µs1218A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Forward Voltage <sup>a</sup>          | V <sub>SD</sub>      | $I_{F} = 45 \text{ A}, V_{GS} = 0 \text{ V}$                                                 |       | 1     | 1.5   | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reverse Recovery Time                 | t <sub>rr</sub>      | I <sub>F</sub> = 45 A, di/dt = 100 A/μs                                                      |       | 150   | 225   | ns   |
| Reverse Recovery ChargeQ <sub>rr</sub> 0.92μC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peak Reverse Recovery Current         | I <sub>RM(REC)</sub> |                                                                                              |       | 12    | 18    | А    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reverse Recovery Charge               | Q <sub>rr</sub>      |                                                                                              |       | 0.9   | 2     | μC   |

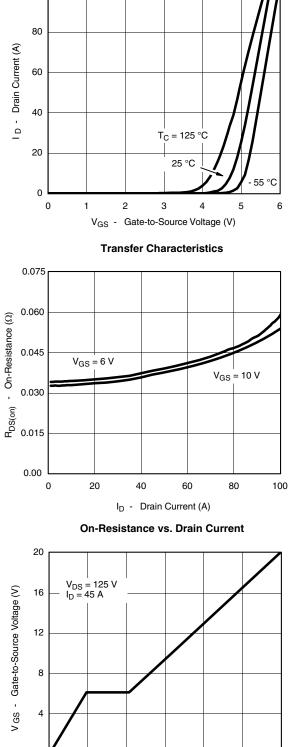
Notes:

a. Pulse test; pulse width  $\leq$  300  $\mu s,$  duty cycle  $\leq$  2 %.

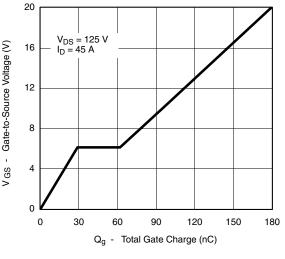

b. Guaranteed by design, not subject to production testing.

c. Independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


www.VBsemi.com

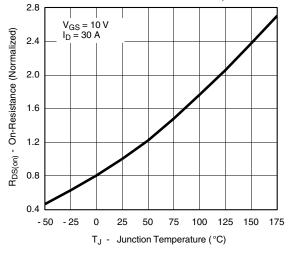




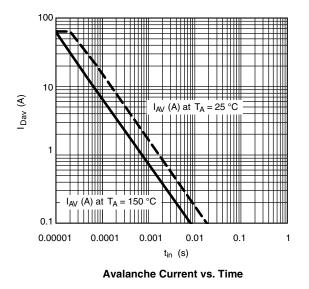

### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

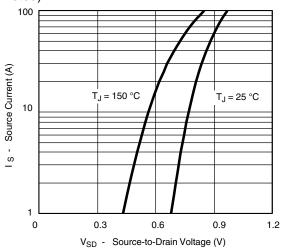




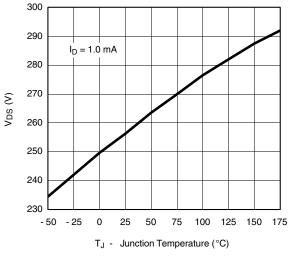

100




Gate Charge



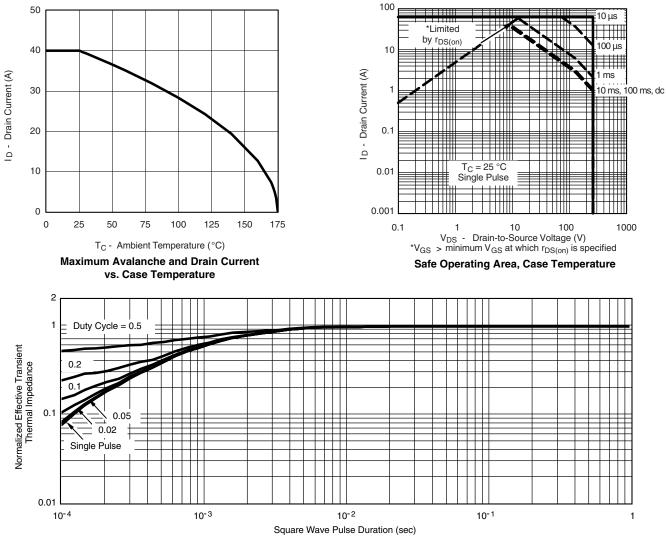

#### TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)




**On-Resistance vs. Junction Temperature** 



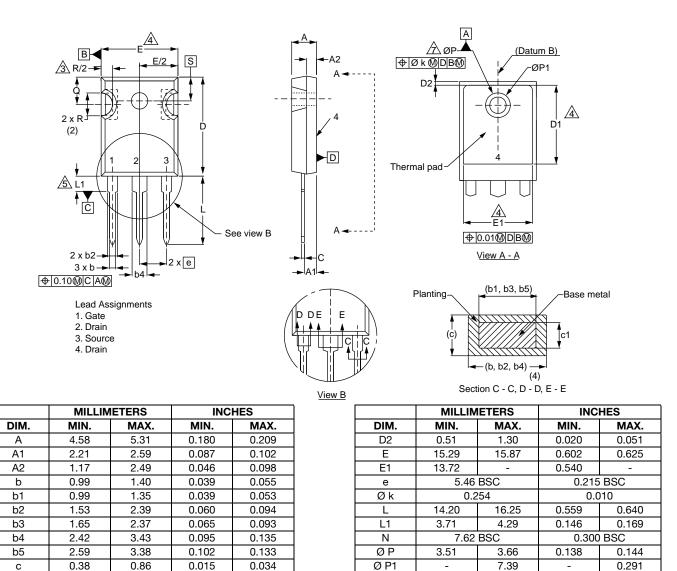



Source-Drain Diode Forward Voltage



Drain Source Breakdown vs. Junction Temperature




#### THERMAL RATINGS



Normalized Thermal Transient Impedance, Junction-to-Case







Q

R

S

5.31

4.52

5.51 BSC

5.69

5.49

0.209

0.178

0.217 BSC

0.224

0.216

c1

D

D1

0.38

19.71

13.08

0.76

20.82

-

0.015

0.776

0.515

0.030

0.820

-



# Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

## **Material Category Policy**

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.