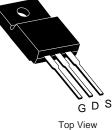
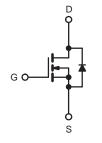


HM18N70F-VB Datasheet

N-Channel 700V (D-S) Super Junction Power MOSFET

PRODUCT SUMMA	RY	
V _{DS} (V) at T _J max.	700)
R _{DS(on)} at 25 °C (Ω)	$V_{GS} = 10 V$	0.45
Q _g max. (nC)	70	
Q _{gs} (nC)	9	
Q _{gd} (nC)	16	
Configuration	Sing	le


FEATURES


- Low figure-of-merit (FOM) Ron x Qg
- Low input capacitance (C_{iss})
- Reduced switching and conduction losses
- Ultra low gate charge (Q_q)
- Avalanche energy rated (UIS)

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting

TO-220 FULLPAK

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)		
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage			V _{DS}	700	- V
Gate-Source Voltage			V _{GS}	± 30	v
Continuous Duoin Current (T. 150 °C)	V at 10 V	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$ $T_{\rm C} = 100 \ ^{\circ}{\rm C}$	I	11	
Continuous Drain Current (T _J = 150 °C)	V _{GS} at 10 V	T _C = 100 °C	I _D	8	А
Pulsed Drain Current ^a			I _{DM}	28	
Linear Derating Factor			1.4	W/°C	
Single Pulse Avalanche Energy ^b			E _{AS}	226	mJ
Maximum Power Dissipation		PD	156	W	
Operating Junction and Storage Temperature Range	e		T _J , T _{stg}	-55 to +150	°C
Drain-Source Voltage Slope	$T_{\rm J} = 1$	125 °C	-l\ / / -lt	37	
Reverse Diode dV/dt ^d	•		dV/dt	28	V/ns
Soldering Recommendations (Peak Temperature) ^c	for	10 s		300	°C

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature.

b. V_{DD} = 50 V, starting T_J = 25 °C, L = 28.2 mH, R_g = 25 Ω , I_{AS} = 4 A.

c. 1.6 mm from case.

d. $I_{SD} \leq I_D$, dl/dt = 100 A/µs, starting T_J = 25 °C.

COMPLIANT HALOGEN

Static Vos	THERMAL RESISTANCE RATI	NGS							
Maximum Junction-to-Case (Drain) R_{HLC} - 0.8 UN SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UN Static Drain-Source Breakdown Voltage VDS VDS TEST CONDITIONS MIN. TYP. MAX. UN Gate-Source Dreshold Voltage (N) VDS VDS Loss 2. 4 V Gate-Source Threshold Voltage (N) VDS VDS 2.50 µA 2 4 V Gate-Source Leakage ILSS VDS 2.50 µA 2 - 4 V Zero Gate Voltage Drain Current IDSS VDS = 200 V, VDS = 0 V - - 1.0 µJ Drain-Source On-State Resistance RDS(en) VDS = 200 V, VDS = 0 V, T_0 = 125 °C - 1.0 µJ Input Capacitance Cass VDS = 100 V, ID = 6 A - 0.45 - 9.5 Reserrer Transfer Capacitance, Firme Cottp Cottp Cass	PARAMETER	SYMBOL	TYP.		MAX.		UNIT		
Maximum Junction-to-Case (Drain) P_{thyle} - 0.8 SPECIFICATIONS (T_j = 25 °C, unless otherwise noted) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UN Statio Unable of the state of	Maximum Junction-to-Ambient	R _{thJA}	-		62			°C ///	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum Junction-to-Case (Drain)	R _{thJC}	- 0.8				- °C/W		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
Static Vos Vos Vos Vos Vos Vos Toto - V Gate-Source Breakdown Voltage $\Delta V_{0S}/T_J$ Reference to 25 °C, Ip = 1 mA - 0.78 - V Gate-Source Threshold Voltage (N) V_{0S} $V_{0S} = V_{0S}$, Ip = 250 µA 2 - 4 V Gate-Source Threshold Voltage (N) V_{0S} $V_{0S} = V_{0S}$, Ip = 250 µA 2 - 4 V Gate-Source Threshold Voltage (N) V_{0S} $V_{0S} = 100 V$ - - 1 V_{VS} Care Gate Voltage Drain Current Ipps $V_{0S} = 100 V$ $V_{0S} = 0 V$ - - 10 μ^{μ} Drain-Source On-State Resistance $R_{DS(m)}$ $V_{0S} = 10 V$ Ip = 6 A - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 -	SPECIFICATIONS (T_J = 25 $^\circ C, u$	Inless otherwi	se noted)						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TES	CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static							-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	V _{GS} =	= 0 V, I _D =	250 µA	700	-	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C,	I _D = 1 mA	-	0.78	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage (N)	V _{GS(th)}	V _{DS} =	V _{GS} , I _D =	250 µA	2	-	4	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,	V _{GS} = ± 20	V	-	-	± 100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}		$V_{GS} = \pm 30$	V	-	-	± 1	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{DS} = 700 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$		-	-	1	μA	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}			-	-	10		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance	R _{DS(on)}	1			-	0.45	-	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance				-	3.5	-	S	
$ \begin{array}{c c c c c c c } \hline \text{Output Capacitance} & C_{\text{oss}} & V_{\text{DS}} = 100 \text{ V}, \\ f = 1 \text{ MHz} & - & 65 & - \\ \hline - & 4 & - & \\ \hline - & 4 & - & \\ \hline - & 50 & - & \\ \hline - & 160 & - & \\ \hline - & 16 & - & \\ \hline - & 16 & - & \\ \hline - & 16 & - & \\ \hline - & 166 & - & \\ \hline - & 16 & 32 & \\ \hline - & 18 & 36 & \\ \hline - & 10 & 12 & \\ \hline - & 11 & \\ \hline - $	Dynamic								1
$ \begin{array}{c c c c c c c } \hline \text{Output Capacitance} & C_{\text{oss}} & V_{\text{DS}} = 100 \text{ V}, \\ f = 1 \text{ MHz} & - & 65 & - \\ \hline - & 4 & - & \\ \hline - & 4 & - & \\ \hline - & 50 & - & \\ \hline - & 160 & - & \\ \hline - & 16 & - & \\ \hline - & 16 & - & \\ \hline - & 16 & - & \\ \hline - & 166 & - & \\ \hline - & 16 & 32 & \\ \hline - & 18 & 36 & \\ \hline - & 10 & 12 & \\ \hline - & 11 & \\ \hline - $	Input Capacitance	C _{iss}		$V_{cc} = 0.$	/	-	1224	-	
Reverse Transfer Capacitance C_{rss} $f = 1 \text{ MHz}$ -4-Effective Output Capacitance, Energy Relateda $C_{o(er)}$ $V_{DS} = 0 \text{ V}$ to $520 \text{ V}, V_{GS} = 0 \text{ V}$ - 50 -Effective Output Capacitance, Time Relatedb $C_{o(tr)}$ $V_{DS} = 0 \text{ V}$ to $520 \text{ V}, V_{GS} = 0 \text{ V}$ - 50 -Total Gate Charge Q_g Q_{gs} $V_{GS} = 10 \text{ V}$ $I_D = 6 \text{ A}, V_{DS} = 520 \text{ V}$ - 9 -Gate-Source Charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 6 \text{ A}, V_{DS} = 520 \text{ V}$ - 9 - 160 -Turn-On Delay Time $t_{d(on)}$ $V_{CS} = 10 \text{ V}, R_g = 9.1 \Omega$ - 16 32 - 16 32 Turn-Off Delay Time $t_{d(off)}$ $V_{CS} = 10 \text{ V}, R_g = 9.1 \Omega$ - 18 36 - 18 36 Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain- 0.81 - Ω Drain-Source Body Diode Characteristics P_P P_P P_P P_P P_P P_P Pulsed Diode Forward Current I_S $MOSFET symbol$ showing the integral reverse $p - n$ junction diode- 10.0 1.2 V Diode Forward Voltage V_{SD} $T_J = 25 \text{ °C}, I_S = 6 \text{ A}, V_{GS} = 0 \text{ V}$ - 1.0 1.2 V Reverse Recovery Time t_{rr} T_r $T_J = 25 \text{ °C}, I_S = 6 \text{ A}, V_{GS} = 0 \text{ V}$ - 1.0 1.2 V			V _{DS} = 100 V, f = 1 MHz		-	65	-	pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance				-	4	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{o(er)}			-	50	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{o(tr)}	$v_{\rm DS} = 0$ v	10 520 V,	v _{GS} = 0 v	-	160	-	
$\begin{tabular}{ c c c c c } \hline Gate-Drain Charge & Q_{gd} & $-$$ 16$ -$ $-$ $$ 16$ $-$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	Total Gate Charge	Qg				-	35	70	
$\begin{tabular}{ c c c c c c } \hline Turn-On Delay Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge	Q _{gs}	$V_{GS} = 10 V$ $I_D = 6 A,$		A, V _{DS} = 520 V	-	9	-	nC
Rise Time t_r $V_{DD} = 520 \text{ V}, I_D = 6 \text{ A}, V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ $ 19$ 38 $ 35$ 70 Fall Time t_f t_f $ 18$ 36 $ 18$ 36 $ 18$ 36 Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain $ 0.81$ $ \Omega$ Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S $MOSFET$ symbol showing the integral reverse $p - n$ junction diode $ 11$ A Pulsed Diode Forward Current I_{SM} $T_J = 25 \text{ °C}$, $I_S = 6 \text{ A}$, $V_{GS} = 0 \text{ V}$ $ 1.0$ 1.2 V Reverse Recovery Time t_{rr} t_{rr} $ 309$ 618 ns	Gate-Drain Charge	Q _{gd}				-	16	-	
Turn-Off Delay Time $t_{d(off)}$ $V_{DD} = 520$ V, $I_D = 6$ A, $V_{GS} = 10$ V, $R_g = 9.1 \Omega$ -3570Fall Time t_f -1836Gate Input Resistance R_g $f = 1$ MHz, open drain-0.81- Ω Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode-11APulsed Diode Forward Current I_{SM} $T_J = 25$ °C, $I_S = 6$ A, $V_{GS} = 0$ V-1.01.2VReverse Recovery Time t_{rr} -309618ns	Turn-On Delay Time	t _{d(on)}				-	16	32	
Fall Time t_f -1836Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain-0.81- Ω Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode-11APulsed Diode Forward Current I_{SM} $P_J = 25 \ ^\circ C$, $I_S = 6 \ ^\circ A$, $V_{GS} = 0 \ ^\circ$ -1.01.2VReverse Recovery Time t_{rr} t_{rr} -309618ns	Rise Time		$V_{GS} = 10 \text{ V}, \text{ R}_{g} = 9.1 \Omega$		-	19	38	ns	
Gate Input Resistance R_g $f = 1 \text{ MHz}$, open drain- 0.81 - Ω Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode11APulsed Diode Forward Current I_{SM} $P_J = 25 \ ^{\circ}C$, $I_S = 6 \ ^{\circ}A$, $V_{GS} = 0 \ ^{\circ}V$ -1.01.2 V Diode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 6 \ ^{\circ}A$, $V_{GS} = 0 \ ^{\circ}V$ -309618ns							-		
Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Is MOSFET symbol showing the integral reverse $p - n$ junction diode - 11 A Pulsed Diode Forward Current IsM $T_J = 25 \ ^{\circ}C$, $I_S = 6 \ A$, $V_{GS} = 0 \ V$ - 1.0 1.2 V Diode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 6 \ A$, $V_{GS} = 0 \ V$ - 3.09 6.18 ns					-		36		
Continuous Source-Drain Diode CurrentIsMOSFET symbol showing the integral reverse p - n junction diode-11APulsed Diode Forward CurrentIsM $P - n$ junction diode28Diode Forward Voltage V_{SD} $T_J = 25$ °C, $I_S = 6$ A, $V_{GS} = 0$ V-1.01.2VReverse Recovery Time t_{rr} -309618ns	•		f = 1	MHz, ope	n drain		0.81	-	Ω
Contributious Source-Drain Diode CurrentISshowing the integral reverse $p - n$ junction diodeIIIIIIIIPulsed Diode Forward CurrentISMISM $p - n$ junction diodeIIIIIIIIIIIIDiode Forward VoltageVSDTJ = 25 °C, IS = 6 A, VGS = 0 V-1.01.2VReverse Recovery Timetrr-309618ns	Drain-Source Body Diode Characteristic	cs	T						1
Pulsed Diode Forward CurrentIsmIntegra reverse p - n junction diode28Diode Forward Voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 6 \ ^{\circ}A$, $V_{GS} = 0 \ ^{\circ}V$ -1.01.2 V_{SD} Reverse Recovery Time t_{rr} -309618ns	Continuous Source-Drain Diode Current	I _S			-	-	11		
Reverse Recovery Time t _{rr} - 309 618 ns	Pulsed Diode Forward Current	I _{SM}	Ū		G S S S S S S S S S S S S S S S S S S S	-	-	28	
Reverse Recovery Time t _{rr} - 309 618 ns	Diode Forward Voltage	V _{SD}	T _J = 25 °	C, I _S = 6 A	., V _{GS} = 0 V	-	1.0	1.2	V
· · · · · · · · · · · · · · · · · · ·			-	-		- 1	309	618	ns
Reverse Recovery Charge Q_{rr} $T_J = 25 °C, I_F = I_S = 6 A,$ $dI/dt = 100 A/us V_F = 25 V$ - 3.8 7.6 μ C	Reverse Recovery Charge		$T_J = 25 \text{ °C}, I_F = I_S = 6 \text{ A}, $ dl/dt = 100 A/µs, $V_R = 25 \text{ V}$		-	3.8		μC	
$dI/dt = 100 \text{ A/}\mu\text{s}, \text{ V}_R = 25 \text{ V}$, 0				-			A	

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} . b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS} .

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

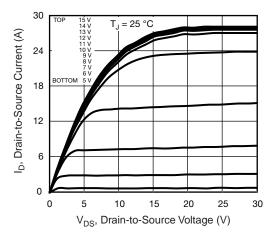


Fig. 1 - Typical Output Characteristics

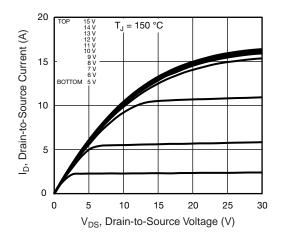


Fig. 2 - Typical Output Characteristics

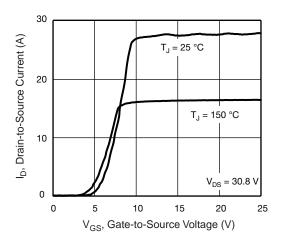


Fig. 3 - Typical Transfer Characteristics

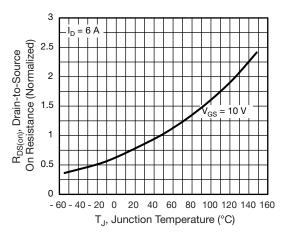


Fig. 4 - Normalized On-Resistance vs. Temperature

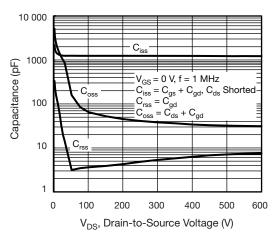


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

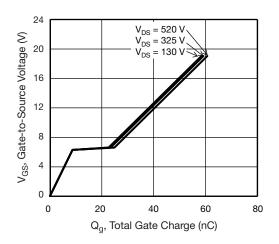


Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

HM18N70F-VB

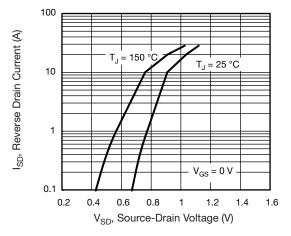
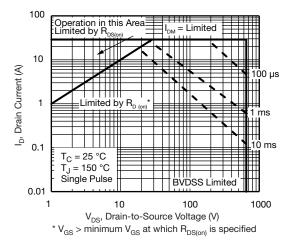



Fig. 7 - Typical Source-Drain Diode Forward Voltage

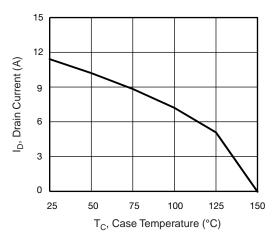


Fig. 9 - Maximum Drain Current vs. Case Temperature

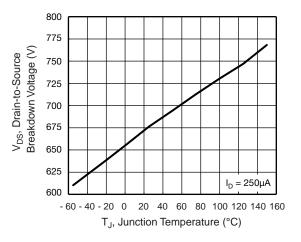


Fig. 10 - Temperature vs. Drain-to-Source Voltage

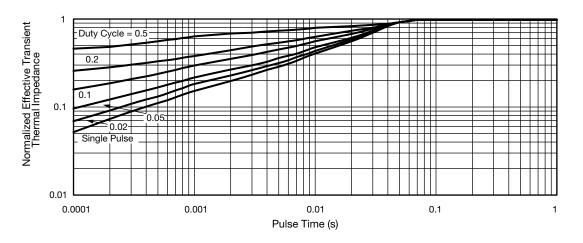


Fig. 11 - Normalized Thermal Transient Impedance, Junction-to-Case

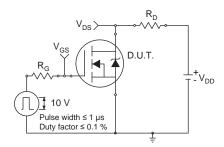


Fig. 12 - Switching Time Test Circuit

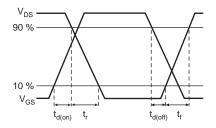


Fig. 13 - Switching Time Waveforms

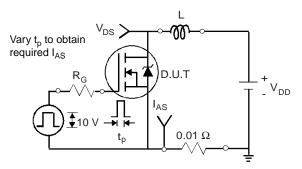


Fig. 14 - Unclamped Inductive Test Circuit

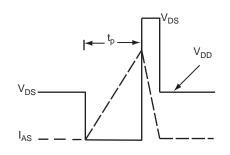


Fig. 15 - Unclamped Inductive Waveforms

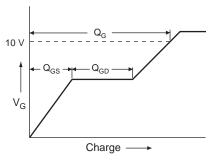


Fig. 16 - Basic Gate Charge Waveform

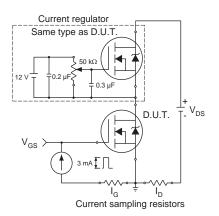
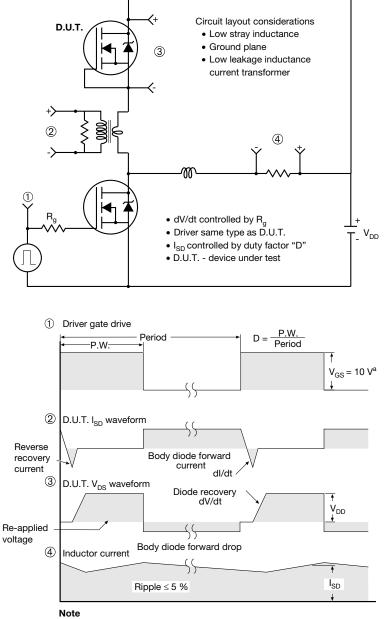
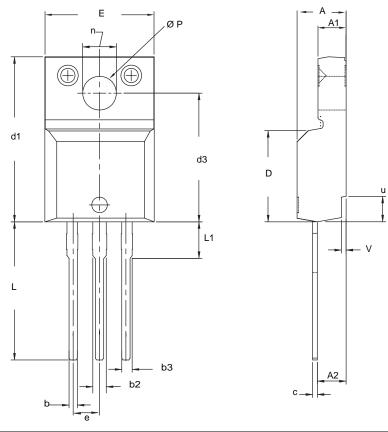



Fig. 17 - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit



a. $V_{GS} = 5$ V for logic level devices

Fig. 18 - For N-Channel

TO-220 FULLPAK (HIGH VOLTAGE)

	MILLI	METERS	INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.570	4.830	0.180	0.190	
A1	2.570	2.830	0.101	0.111	
A2	2.510	2.850	0.099	0.112	
b	0.622	0.890	0.024	0.035	
b2	1.229	1.400	0.048	0.055	
b3	1.229	1.400	0.048	0.055	
С	0.440	0.629	0.017	0.025	
D	8.650	9.800	0.341	0.386	
d1	15.88	16.120	0.622	0.635	
d3	12.300	12.920	0.484	0.509	
E	10.360	10.630	0.408	0.419	
е	2.54	BSC	0.100	BSC	
L	13.200	13.730	0.520	0.541	
L1	3.100	3.500	0.122	0.138	
n	6.050	6.150	0.238	0.242	
ØP	3.050	3.450	0.120	0.136	
u	2.400	2.500	0.094	0.098	
V	0.400	0.500	0.016	0.020	

Notes

1. To be used only for process drawing. 2. These dimensions apply to all TO-220, FULLPAK leadframe versions 3 leads. 3. All critical dimensions should C meet $C_{pk} > 1.33$.

All dimensions include burrs and plating thickness.
 No chipping or package damage.

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.