

HFS6N90-VB Datasheet N-Channel 900 V (D-S) Super Junction Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	900)			
R _{DS(on)} (Ω)	$V_{GS} = 10 V$	1.2			
Q _g (Max.) (nC)	200)			
Q _{gs} (nC)	24				
Q _{gd} (nC)	110)			
Configuration	Single				

FEATURES

- Dynamic dV/dt Rating
- Repetitive Avalanche Rated
- Isolated Central Mounting Hole
- · Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

G O —		
	0	
	o s	

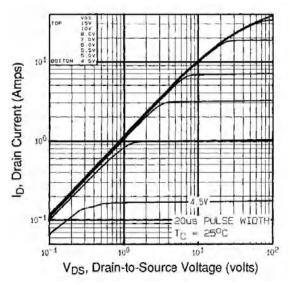
N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _C	= 25 °C, unl	ess otherwis	se noted)			
PARAMETER			SYMBOL	LIMIT	UNIT	
Drain-Source Voltage			V _{DS}	900	V	
Gate-Source Voltage			V _{GS}	± 20	V	
Continuous Drain Current	V _{GS} at 10 V	T _C = 25 °C	I-	5		
Continuous Drain Current	VGS at 10 V	T _C = 100 °C	ID	3.9	A	
Pulsed Drain Current ^a			I _{DM}	21	1	
Linear Derating Factor				1.5	W/°C	
Single Pulse Avalanche Energy ^b			E _{AS}	770	mJ	
Repetitive Avalanche Current ^a			I _{AR}	7.8	A	
Repetitive Avalanche Energy ^a			E _{AR}	19	mJ	
Maximum Power Dissipation	T _C = 25 °C			190	W	
Peak Diode Recovery dV/dt ^c			dV/dt	2.0	V/ns	
Operating Junction and Storage Temperature Range			T _J , T _{stg}	- 55 to + 150	°C	
Soldering Recommendations (Peak Temperature) for 10 s			-	300 ^d		
Mounting Torque	6.00 or 1	0.00		10	lbf ∙ in	
Mounting Torque	6-32 or M3 screw			1.1	N · m	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. $V_{DD} = 50$ V, starting $T_J = 25$ °C, L = 23 mH, $R_g = 25 \Omega$, $I_{AS} = 7.8$ A (see fig. 12). c. $I_{SD} \leq 7.8$ A, dl/dt ≤ 140 A/µs, $V_{DD} \leq 600$ V, $T_J \leq 150$ °C. d. 1.6 mm from case.

* Pb containing terminations are not RoHS compliant, exemptions may apply



THERMAL RESISTANCE RATI	NGS							
PARAMETER	SYMBOL	TYP.		MAX.			UNIT	
Maximum Junction-to-Ambient	R _{thJA}	-		40				
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.24		-			°C/W	
Maximum Junction-to-Case (Drain)	R _{thJC}	-		0.65				
SPECIFICATIONS ($T_J = 25 \text{ °C}, u$					[1	1
PARAMETER	SYMBOL	TES	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
Static					1	1	1	1
Drain-Source Breakdown Voltage	V _{DS}		= 0 V, I _D =		900	-	-	V
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C,	I _D = 1 mA	-	0.98	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	= V _{GS} , I _D =	250 µA	2.0	-	4.0	V
Gate-Source Leakage	I _{GSS}	$V_{GS} = \pm 20 V$		-	-	± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =	= 800 V, Vo	_{as} = 0 V	-	-	100	μA
	'DSS	V _{DS} = 640 \	$V_{\rm GS} = 0$	V, T _J = 125 °C	b - 1.2 5.6 - - 3100 - 800 - 490 	500	μ, ι	
Drain-Source On-State Resistance	R _{DS(on)}	$V_{GS} = 10 V$	ار	_D = 3.7 A ^b	-	1.2	-	Ω
Forward Transconductance	g fs	V _{DS} =	: 100 V, I _D :	= 3.7 A ^b	5.6	-	-	S
Dynamic								
Input Capacitance	C _{iss}		V _{GS} = 0 \	1	-	3100	-	
Output Capacitance	C _{oss}		$V_{DS} = 25$	V,	-	800	-	pF
Reverse Transfer Capacitance	C _{rss}	f = 1	.0 MHz, se	e fig. 5	-	490	-	
Total Gate Charge	Qg				-	-	200	
Gate-Source Charge	Q _{gs}	$V_{GS} = 10 V$		A, $V_{DS} = 400 V$, iq. 6 and 13^{b}	-	-	24	nC
Gate-Drain Charge	Q _{gd}	1	0001	ig. o and ro	-	-	110	
Turn-On Delay Time	t _{d(on)}				-	19	-	
Rise Time	tr	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 3.8 \text{ A}, - 38 - 86 \text{ R}_{g} = 6.2 \Omega, \text{ R}_{D} = 52 \Omega - 120 - 120 \text{ R}_{D} = 120 \text{ R}_{$			-			
Turn-Off Delay Time	t _{d(off)}	R _g =	= 6.2 Ω, R _D	= 52 Ω nb	-	120	-	ns
Fall Time	t _f		see lig. It		-	39	- S - P - P 200 24 110 - n - n - n - n 5.0	
Internal Drain Inductance	L _D	$\begin{array}{c c} V_{DD} = 400 \text{ V}, \text{ I}_{D} = 3.8 \text{ A}, \\ R_{g} = 6.2 \Omega, R_{D} = 52 \Omega \\ \text{see fig. 10^{b}} & - & 120 & - \\ \hline & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$		-				
Internal Source Inductance	L _S			13	-	— nH		
Drain-Source Body Diode Characteristic	S							
Continuous Source-Drain Diode Current	I _S	MOSFET sym showing the	bol		-	-	5.0	•
Pulsed Diode Forward Current ^a	I _{SM}	integral revers p - n junction			-	-	21	A
Body Diode Voltage	V _{SD}	T _J = 25 °C	C, I _S = 3.8 A	A, V _{GS} = 0 V ^b	-	-	1.8	V
Body Diode Reverse Recovery Time	t _{rr}	Т. =	25 °C, I _F =	= 3.8 A.	-	650	980	ns
Body Diode Reverse Recovery Charge	Q _{rr}	dl	/dt = 100 A	Vµs ^b	-	3.8	5.7	μC
Forward Turn-On Time	t _{on}	Intrinsic tu	rn-on time	is negligible (turn	-on is do			. ·

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 1 - Typical Output Characteristics, T_C = 25 °C

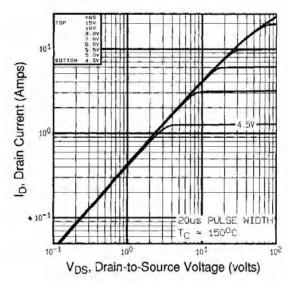


Fig. 2 - Typical Output Characteristics, $T_C = 150$ °C

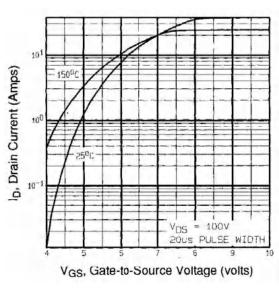
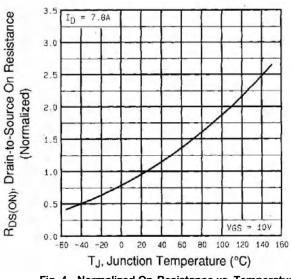



Fig. 3 - Typical Transfer Characteristics

HFS6N90-VB

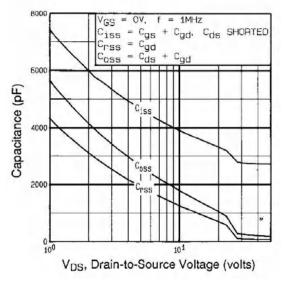


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

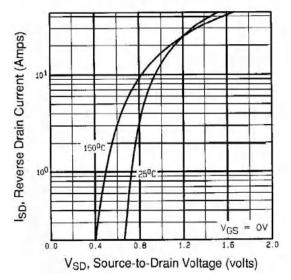


Fig. 7 - Typical Source-Drain Diode Forward Voltage

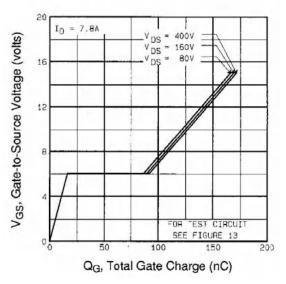
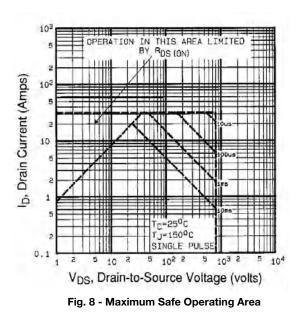



Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage

HFS6N90-VB

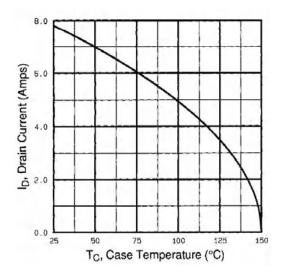


Fig. 9 - Maximum Drain Current vs. Case Temperature

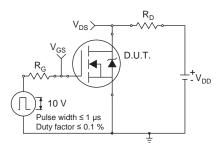


Fig. 10a - Switching Time Test Circuit

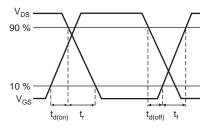


Fig. 10b - Switching Time Waveforms

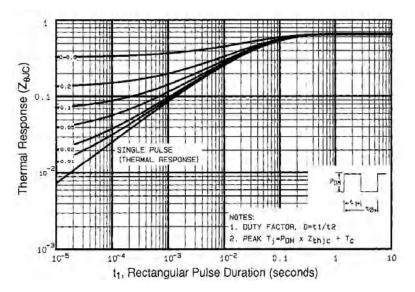


Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

HFS6N90-VB

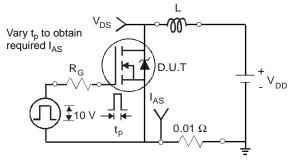


Fig. 12a - Unclamped Inductive Test Circuit

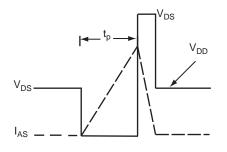


Fig. 12b - Unclamped Inductive Waveforms

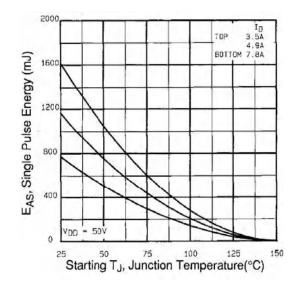


Fig. 12c - Maximum Avalanche Energy vs. Drain Current

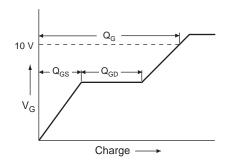


Fig. 13a - Basic Gate Charge Waveform

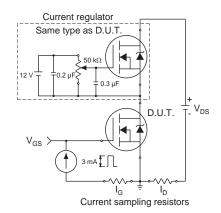
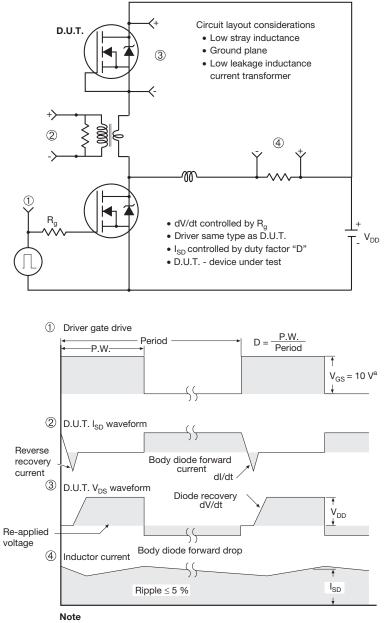



Fig. 13b - Gate Charge Test Circuit

Peak Diode Recovery dV/dt Test Circuit

a. $V_{GS} = 5 V$ for logic level devices

Fig. 14 - For N-Channel

TO-220 FULLPAK (HIGH VOLTAGE)

MIN. 4.570 2.570 2.510 0.622 1.229 1.229 0.440 8.650 15.88	MAX. 4.830 2.830 2.850 0.890 1.400 0.629 9.800	MIN. 0.180 0.101 0.099 0.024 0.048 0.048 0.017 0.341	MAX. 0.190 0.111 0.112 0.035 0.055 0.055 0.055 0.025 0.386
2.570 2.510 0.622 1.229 1.229 0.440 8.650	2.830 2.850 0.890 1.400 1.400 0.629 9.800	0.101 0.099 0.024 0.048 0.048 0.048	0.111 0.112 0.035 0.055 0.055 0.055 0.025
2.510 0.622 1.229 1.229 0.440 8.650	2.850 0.890 1.400 1.400 0.629 9.800	0.099 0.024 0.048 0.048 0.017	0.112 0.035 0.055 0.055 0.025
0.622 1.229 1.229 0.440 8.650	0.890 1.400 1.400 0.629 9.800	0.024 0.048 0.048 0.017	0.035 0.055 0.055 0.025
1.229 1.229 0.440 8.650	1.400 1.400 0.629 9.800	0.048 0.048 0.017	0.055 0.055 0.025
1.229 0.440 8.650	1.400 0.629 9.800	0.048 0.017	0.055 0.025
0.440 8.650	0.629 9.800	0.017	0.025
8.650	9.800		
		0.341	0.386
15.88	16 100		0.000
	16.120	0.622	0.635
12.300	12.920	0.484	0.509
10.360	10.630	0.408	0.419
2.54	4 BSC	0.100	BSC
13.200	13.730	0.520	0.541
3.100	3.500	0.122	0.138
6.050	6.150	0.238	0.242
3.050	3.450	0.120	0.136
2.400	2.500	0.094	0.098
0.400	0.500	0.016	0.020
	10.360 2.54 13.200 3.100 6.050 3.050 2.400	10.360 10.630 2.54 BSC 13.730 3.100 3.500 6.050 6.150 3.050 3.450 2.400 2.500	10.360 10.630 0.408 2.54 BSC 0.100 13.200 13.730 0.520 3.100 3.500 0.122 6.050 6.150 0.238 3.050 3.450 0.120 2.400 2.500 0.094

Notes

1. To be used only for process drawing. 2. These dimensions apply to all TO-220, FULLPAK leadframe versions 3 leads. 3. All critical dimensions should C meet $C_{pk} > 1.33$. 4. All dimensions include burrs and plating thickness. 5. No chipping or package damage.

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.