

2SK3273-01MR-VB Datasheet N-Channel 60 V (D-S) MOSFET

PRODUCT	SUMMARY	
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^a
60	0.005 at V _{GS} = 10 V	120
60	0.013 at V _{GS} = 4.5 V	95

TO-220 FULLPAK

FEATURES

- 175 °C Junction Temperature
- Trench Power MOSFET
- Material categorization:

ABSOLUTE MAXIMUM RATINGS (T_C =	= 25 °C, unless othe	rwise noted)			
Parameter		Symbol	Limit	Unit	
Gate-Source Voltage		V _{GS}	± 20	V	
	T _C = 25 °C	1	120	_	
Continuous Drain Current (T _J = 175 °C) ^b	T _C = 100 °C		95 ^a		
Pulsed Drain Current		I _{DM}	300	А	
Continuous Source Current (Diode Conduction)		I _S	70 ^a	-	
Avalanche Current		I _{AS}	50		
Single Avalanche Energy (Duty Cycle \leq 1 %)	L = 0.1 mH	E _{AS}	125	mJ	
Mavimum Dowar Dissinction	T _C = 25 °C	D	136	w	
Maximum Power Dissipation	T _A = 25 °C	P _D	3 ^b , 8.3 ^{b, c}	vv	
Operating Junction and Storage Temperature Range		T _J , T _{stq}	- 55 to 175	°C	

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Mauinung lungting to Archieged	t ≤ 10 sec	R _{thJA}	15	18	
Maximum Junction-to-Ambient ^a	Steady State	'` thJA	40	50	°C/W
Maximum Junction-to-Case		R _{thJC}	0.85	1.1	
Notes:					

a. Package limited.

b. Surface mounted on 1" x 1" FR4 board.

c. t ≤ 10 s.

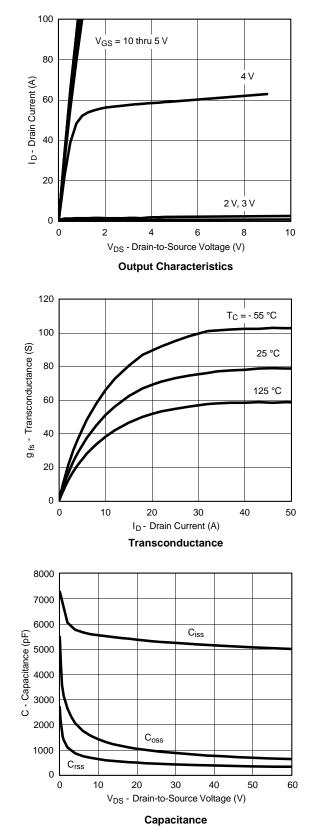
B	[®] VBsemi
www.\	/Bsemi.com

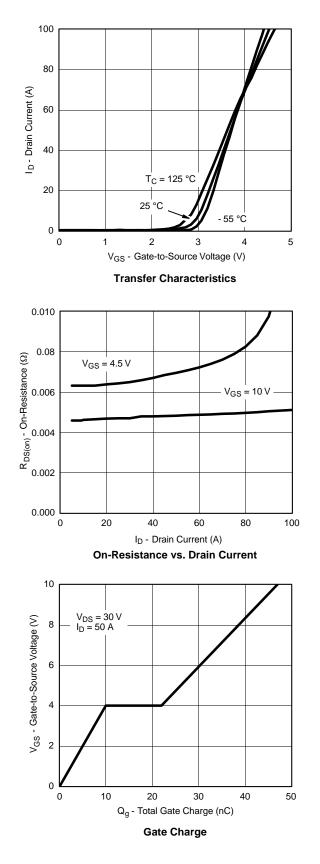
ParameterSymbolTest ConditionsStaticDrain-Source Breakdown Voltage V_{DS} $V_{GS} = 0$ V, $I_D = 250 \ \mu A$ Gate Threshold Voltage $V_{GS}(th)$ $V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$ Gate-Body Leakage I_{GSS} $V_{DS} = 0$ V, $V_{GS} = \pm 20$ VZero Gate Voltage Drain Current I_{DSS} $V_{DS} = 60$ V, $V_{GS} = 0$ V, $T_J = 125 \ ^{\circ}C$ On-State Drain Current ^b $I_{D(on)}$ $V_{DS} = 60$ V, $V_{GS} = 0$ V, $T_J = 175 \ ^{\circ}C$ On-State Drain Current ^b $I_{D(on)}$ $V_{DS} = 5$ V, $V_{GS} = 10$ VDrain-Source On-State Resistance ^b P_{SS} $V_{GS} = 10$ V, $I_D = 20$ A, $T_J = 125 \ ^{\circ}C$ V_{GS} = 10 V, $I_D = 20$ A, $T_J = 125 \ ^{\circ}C$ $V_{GS} = 10$ V, $I_D = 20$ A, $T_J = 125 \ ^{\circ}C$ Drain-Source On-State Resistance ^b P_{fS} $V_{DS} = 10$ V, $I_D = 20$ A, $T_J = 175 \ ^{\circ}C$ Forward Transconductance ^b P_{fS} $V_{DS} = 15$ V, $I_D = 15$ ADynamicInput Capacitance C_{iSS} Output Capacitance C_{coss} $V_{GS} = 0$ V, $V_{DS} = 25$ V, $f = 1$ MHzReverse Transfer Capacitance C_{rss} Total Gate Charge ^c Q_g	Min. 60 1 60 60 60	Typ. ^a 2 2 0.005 0.010 0.015 0.013 60	Max. 3 ± 100 1 50 250 	Unit V nA μA A S	
$ \begin{array}{c c c c c c } \hline Drain-Source Breakdown Voltage & V_{DS} & V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \ \mu\text{A} \\ \hline Gate Threshold Voltage & V_{GS(th)} & V_{DS} = V_{GS, \text{ I}_{D}} = 250 \ \mu\text{A} \\ \hline Gate-Body Leakage & I_{GSS} & V_{DS} = 0 \text{ V}, \text{ V}_{GS} = \pm 20 \text{ V} \\ \hline & V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V} \\ \hline & V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V} \\ \hline & V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V} \\ \hline & V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 125 \ ^{\circ}\text{C} \\ \hline & V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 125 \ ^{\circ}\text{C} \\ \hline & V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 175 \ ^{\circ}\text{C} \\ \hline & V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 10 \text{ V} \\ \hline & V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A} \\ \hline & V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A} \\ \hline & V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 125 \ ^{\circ}\text{C} \\ \hline & V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 125 \ ^{\circ}\text{C} \\ \hline & V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 125 \ ^{\circ}\text{C} \\ \hline & V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 175 \ ^{\circ}\text{C} \\ \hline & V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 175 \ ^{\circ}\text{C} \\ \hline & V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 175 \ ^{\circ}\text{C} \\ \hline & V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A} \\ \hline & \text{Drain-Source On-State Resistance}^{b} \text{ gfs} \text{ V}_{DS} = 15 \text{ V}, \text{ I}_{D} = 20 \text{ A} \\ \hline & \text{Dramic} \\ \hline \hline & \text{Input Capacitance} \text{ C}_{iss} \\ \hline & \text{Output Capacitance} \text{ C}_{coss} \\ \hline & \text{Output Capacitance} \text{ C}_{coss} \\ \hline & \text{Total Gate Charge}^{c} \text{ Q}_{g} \end{array}$	1	0.005 0.010 0.015 0.013	± 100 1 50	nA μA A	
Gate Threshold Voltage $V_{GS}(th)$ $V_{DS} = V_{GS}, I_D = 250 \mu A$ Gate-Body Leakage I_{GSS} $V_{DS} = 0 V, V_{GS} = \pm 20 V$ Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = 60 V, V_{GS} = 0 V$ Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = 60 V, V_{GS} = 0 V, T_J = 125 °C$ On-State Drain Current ^b $I_{D(on)}$ $V_{DS} = 50 V, V_{GS} = 10 V$ Drain-Source On-State Resistance ^b $R_{DS(on)}$ $V_{GS} = 10 V, I_D = 20 A, T_J = 125 °C$ V_{GS} = 10 V, I_D = 20 A, T_J = 125 °C $V_{GS} = 10 V, I_D = 20 A, T_J = 125 °C$ Drain-Source On-State Resistance ^b g_{fs} $V_{DS} = 4.5 V, I_D = 15 A$ Forward Transconductance ^b g_{fs} $V_{DS} = 15 V, I_D = 20 A$ DynamicInput Capacitance C_{iss} Output Capacitance C_{oss} $V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz$ Total Gate Charge ^c Q_g	1	0.005 0.010 0.015 0.013	± 100 1 50	nA μA A	
Gate-Body Leakage I_{GSS} $V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$ Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 125 ^{\circ}\text{C}$ $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 125 ^{\circ}\text{C}$ On-State Drain Current ^b $I_{D(on)}$ $V_{DS} = 50 \text{ V}, V_{GS} = 10 \text{ V}$ Drain-Source On-State Resistance ^b $R_{BS(on)}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 125 ^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 125 ^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 125 ^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175 ^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175 ^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175 ^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175 ^{\circ}\text{C}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175 ^{\circ}\text{C}$ $V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$ Forward Transconductance ^b g_{fs} $V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$ DynamicInput Capacitance C_{iss} Output Capacitance C_{oss} $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ Reverse Transfer Capacitance C_{rss} Total Gate Charge ^c Q_g		0.005 0.010 0.015 0.013	± 100 1 50	μΑ Α Ω	
Zero Gate Voltage Drain CurrentI I DSS $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$ Zero Gate Voltage Drain CurrentI I DSS $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 125 ^{\circ}\text{C}$ On-State Drain CurrentbI I D(on)V V DS = 5 \text{ V}, V_{GS} = 10 \text{ V}Drain-Source On-State Resistanceb $R_{DS(on)}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$ Prain-Source On-State Resistanceb Q_{fs} $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 125 ^{\circ}\text{C}$ VGS = 10 V, I_D = 20 \text{ A}, T_J = 125 ^{\circ}\text{C} $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 125 ^{\circ}\text{C}$ VGS = 10 V, I_D = 20 \text{ A}, T_J = 175 ^{\circ}\text{C} $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175 ^{\circ}\text{C}$ VGS = 10 V, I_D = 20 \text{ A}, T_J = 175 ^{\circ}\text{C} $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175 ^{\circ}\text{C}$ Drain-Source On-State Resistanceb g_{fs} $V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$ Drain-Source On-State Resistanceb g_{fs} $V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$ Drain-Source On-State Resistanceb Q_{fs} $V_{OS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ Forward Transconductance C_{iss} $C_{iss} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ Input Capacitance C_{coss} $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ Reverse Transfer Capacitance C_{rss} $C_{iss} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ Total Gate Charge ^c Q_g $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	60	0.010 0.015 0.013	1 50	μΑ Α Ω	
Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, 125 \ ^{\circ}\text{C}$ $V_{DS} = 60 $	60	0.010 0.015 0.013	50	A	
$\frac{1}{V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 175 \text{ °C}}{V_{DS} = 60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 175 \text{ °C}}$ On-State Drain Current ^b $I_{D(on)}$ $V_{DS} = 5 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 125 \text{ °C}}{V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 125 \text{ °C}}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 175 \text{ °C}}{V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 175 \text{ °C}}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 15 \text{ A}}$ $Proward \text{ Transconductance}^{\text{b}}$ g_{fs} $V_{DS} = 15 \text{ V}, \text{ I}_{D} = 20 \text{ A}$ $Proward \text{ Transconductance}^{\text{b}}$ $V_{GS} = 0 \text{ V}, \text{ V}_{DS} = 25 \text{ V}, \text{ f} = 1 \text{ MHz}}$ $Reverse \text{ Transfer Capacitance}$ C_{rss} $Total \text{ Gate Charge}^{\text{c}}$ Q_{g}	60	0.010 0.015 0.013		A	
$ \begin{array}{c c} On-State Drain Current^b & I_{D(on)} & V_{DS} = 5 \ V, \ V_{GS} = 10 \ V \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 125 \ ^{\circ}C \\ \hline V_{GS} = 10 \ V, \ I_D = 20 \ A, \ T_J = 175 \ ^{\circ}C \\ \hline V_{GS} = 4.5 \ V, \ I_D = 15 \ A \\ \hline \end{array} $	60	0.010 0.015 0.013	250	Ω	
$\begin{array}{c c} P_{DG} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A} \\ \hline V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A} \\ \hline V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 125 ^{\circ}\text{C} \\ \hline V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 125 ^{\circ}\text{C} \\ \hline V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ T}_{J} = 175 ^{\circ}\text{C} \\ \hline V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 15 \text{ A} \\ \hline \textbf{Dynamic} \\ \hline \textbf{Dynamic} \\ \hline \textbf{Duput Capacitance} & \textbf{C}_{iss} \\ \hline \textbf{Output Capacitance} & \textbf{C}_{oss} \\ \hline \textbf{Output Capacitance} & \textbf{C}_{rss} \\ \hline \textbf{Total Gate Charge}^{c} & \textbf{Q}_{g} \end{array}$	60	0.010 0.015 0.013		Ω	
$\begin{array}{c} & \begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ $		0.010 0.015 0.013			
Drain-Source On-State Resistance $R_{DS(on)}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175 ^{\circ}C$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 175 ^{\circ}C$ $V_{GS} = 4.5 \text{ V}, I_D = 15 \text{ A}$ Forward Transconductance g_{fs} $V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$ DynamicInput Capacitance C_{iss} Output Capacitance C_{oss} $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ Reverse Transfer Capacitance C_{rss} Total Gate Charge ^c Q_g		0.015			
$\begin{tabular}{ c c c c c } \hline V_{GS} &= 10 \ V, \ I_D &= 20 \ A, \ I_J &= 173 \ C \\ \hline V_{GS} &= 4.5 \ V, \ I_D &= 15 \ A \\ \hline V_{GS} &= 4.5 \ V, \ I_D &= 15 \ A \\ \hline \hline Dynamic \\ \hline \hline Dynamic \\ \hline \hline Dynamic \\ \hline Input \ Capacitance & C_{iss} \\ \hline Output \ Capacitance & C_{oss} \\ \hline Output \ Capacitance & C_{oss} \\ \hline \hline Output \ Capacitance & C_{rss} \\ \hline \hline Total \ Gate \ Charge^c & Q_g \\ \hline \end{tabular}$		0.013			
Forward Transconductanceb g_{fs} $V_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$ DynamicInput Capacitance C_{iss} Output Capacitance C_{oss} Reverse Transfer Capacitance C_{rss} Total Gate Charge ^c Q_g				S	
DynamicInput Capacitance C_{iss} Output Capacitance C_{oss} Reverse Transfer Capacitance C_{rss} Total Gate Charge ^c Q_g		60		S	
$\begin{tabular}{ c c c c } \hline Input Capacitance & C_{iss} \\ \hline Output Capacitance & C_{oss} \\ \hline Reverse Transfer Capacitance & C_{rss} \\ \hline Total Gate Charge^c & Q_g \\ \hline \end{tabular}$					
Output Capacitance C_{oss} $V_{GS} = 0 \text{ V}, \text{ V}_{DS} = 25 \text{ V}, \text{ f} = 1 \text{ MHz}$ Reverse Transfer Capacitance C_{rss} Total Gate Charge ^c Q_g				•	
Reverse Transfer Capacitance C _{rss} Total Gate Charge ^c Q _g		5650			
Total Gate Charge ^c Q _g		1120		pF	
		525			
		47	70		
Gate-Source Charge ^c Q_{gs} $V_{DS} = 30 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 50 \text{ A}$		10		nC	
Gate-Drain Charge ^c Q _{gd}		12		1	
Turn-On Delay Time ^c t _{d(on)}		10	20		
Rise Time ^c t_r $V_{DD} = 30 \text{ V}, \text{ R}_L = 0.6 \Omega$		15	25		
Turn-Off Delay Time ^c $t_{d(off)}$ $I_D \cong 50 \text{ A}, \text{ V}_{GEN} = 10 \text{ V}, \text{ R}_g = 2.5 \Omega$		35	50	ns .	
Fall Time ^c t _f		20	30		
Source-Drain Diode Ratings and Characteristics ($T_c = 25 \text{ °C}$)					
Pulsed Current I _{SM}		3 0 0		A	
Diode Forward Voltage V_{SD} $I_F = 20 \text{ A}, V_{GS} = 0 \text{ V}$		1	1.5	V	
Reverse Recovery Time t_{rr} $I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		45	100	ns	

SPECIFICATIONS (T₁ = 25 °C, unless otherwise noted)

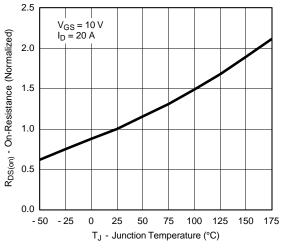
Notes:

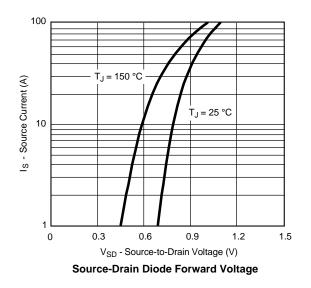
a. For design aid only; not subject to production testing.


b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

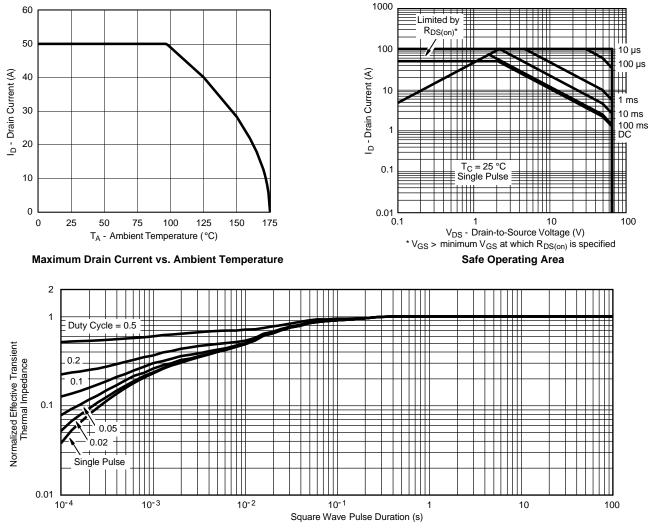

c. Independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

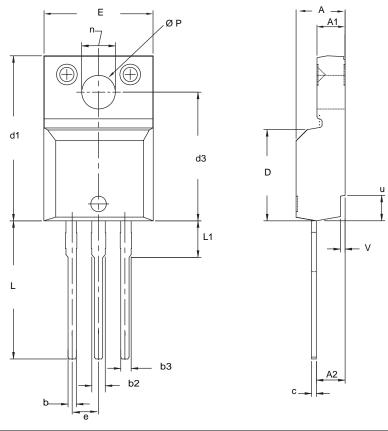

TYPICAL CHARACTERISTICS (25 °C unless noted)



TYPICAL CHARACTERISTICS (25 °C unless noted)


On-Resistance vs. Junction Temperature

2SK3273-01MR-VB


THERMAL RATINGS

Normalized Thermal Transient Impedance, Junction-to-Case

TO-220 FULLPAK (HIGH VOLTAGE)

	MILLI	METERS	INCHES		
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.570	4.830	0.180	0.190	
A1	2.570	2.830	0.101	0.111	
A2	2.510	2.850	0.099	0.112	
b	0.622	0.890	0.024	0.035	
b2	1.229	1.400	0.048	0.055	
b3	1.229	1.400	0.048	0.055	
С	0.440	0.629	0.017	0.025	
D	8.650	9.800	0.341	0.386	
d1	15.88	16.120	0.622	0.635	
d3	12.300	12.920	0.484	0.509	
E	10.360	10.630	0.408	0.419	
е	2.54 BSC		0.100 BSC		
L	13.200	13.730	0.520	0.541	
L1	3.100	3.500	0.122	0.138	
n	6.050	6.150	0.238	0.242	
ØP	3.050	3.450	0.120	0.136	
u	2.400	2.500	0.094	0.098	
V	0.400	0.500	0.016	0.020	

Notes

1. To be used only for process drawing. 2. These dimensions apply to all TO-220, FULLPAK leadframe versions 3 leads. 3. All critical dimensions should C meet $C_{pk} > 1.33$. 4. All dimensions include burrs and plating thickness. 5. No chipping or package damage.

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.