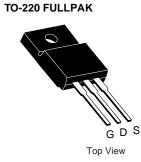
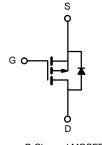


2SJ649-VB Datasheet


P-Channel 60 V (D-S) MOSFET


PRODUCT	SUMMARY		
V _{DS} (V)	R _{DS(on)} (Ω) Max.	I _D (A)	Q _g (Typ.)
- 60	0.050 at V _{GS} = - 10 V	- 30	67
- 00	0.060 at V _{GS} = - 4.5 V	- 24	07

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- Trench Power MOSFET
- 100 % R_g and UIS Tested ٠
- Compliant to RoHS Directive 2002/95/EC

ABSOLUTE MAXIMUM RATINGS	$(T_C = 25 \text{ °C}, \text{ unless oth})$	nerwise noted)			
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	- 60	V	
Gate-Source Voltage		V _{GS}	± 20	v	
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 25 °C	1-	- 30		
	T _C = 70 °C	I _D	- 29	А	
Pulsed Drain Current (t = 300 µs)		I _{DM}	- 100	~	
Avalanche Current		I _{AS}	- 32		
Single Avalanche Energy ^a	L = 0.1 mH	E _{AS}	51	mJ	
No. i and Disciplination of	T _C = 25 °C	Р	41.7 ^b	W	
Maximum Power Dissipation ^a	T _A = 25 °C ^c	– P _D	2.1	٧V	
Operating Junction and Storage Temperature Rar	nge	T _J , T _{stg}	- 55 to 150	°C	

THERMAL RESISTANCE RATINGS			
Parameter	Symbol	Limit	Unit
Junction-to-Ambient (PCB Mount) ^c	R _{thJA}	60	°C/W
Junction-to-Case (Drain)	R _{thJC}	3	C/VV

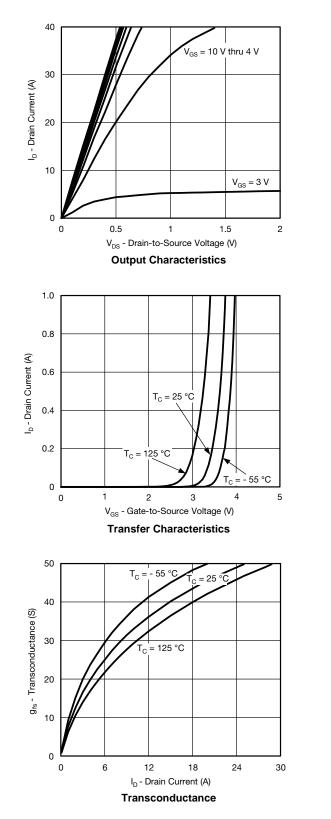
Notes:

a. Duty cycle \leq 1 %.

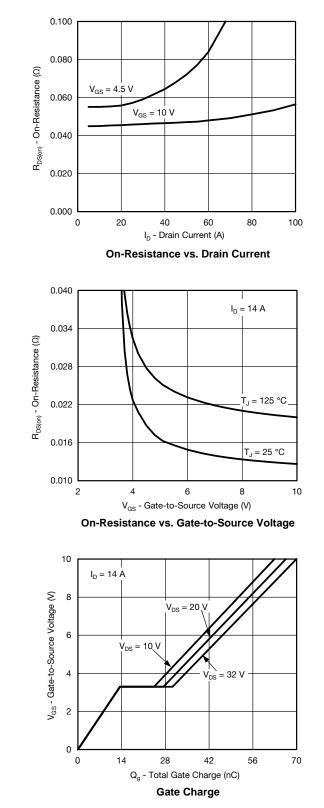
b. See SOA curve for voltage derating.c. When mounted on 1" square PCB (FR-4 material).

$\begin{array}{ c c c c c c } \hline Parameter & Symbol & Test Conditions & Min. & Typ. & Max. & Unit \\ \hline Static & & & & & & & & & & & & & & & & & & &$	SPECIFICATIONS ($T_J = 25$	°C, unless o	otherwise noted)					
$\begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage V_{DS} & V_{DS} = 0 \ V, \ I_{D} = -250 \ \mu A & -60 & & & V \\ \hline Gate Threshold Voltage V_{GS(th)} & V_{DS} = V_{GS}, \ I_{D} = -250 \ \mu A & -1 & -2.5 & & & & & & & & & & & & & & & & & & &$	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Gate Threshold Voltage $V_{GS(th)}$ $V_{DS} = V_{GS}$, $b = -250 \mu$ -1 -2.5 V Gate-Body Leakage I_{GS} $V_{DS} = 0$, $V_{GS} = 20$ 1 ± 250 nA Zero Gate Voltage Drain Current I_{DSS} $V_{DS} = -60$, $V_{GS} = 0$, $V, T_J = 125$ °C -550 μ A On-State Drain Current ^a $I_{D(on)}$ $V_{DS} = -60$, $V, V_{GS} = 0$, $V, T_J = 125$ °C -250 A Drain-Source On-State Resistance ^a $R_{DS(on)}$ $V_{DS} = -10$ V, $I_{DS} = -110$ V -30 A Torun-Source On-State Resistance ^a g_{fs} $V_{DS} = -20$ V, $I_D = -14$ A 0.050 Ω Forward Transconductance ^a g_{fs} $V_{DS} = -20$ V, $I_D = -14$ A 40 S Dynamic ^b $V_{GS} = 0$ V, $V_{DS} = -20$ V, $I_D = -14$ A 40 S Output Capacitance C_{iss} $V_{GS} = 0$ V, $V_{DS} = -20$ V, $I_D = -14$ A 40 S Gate-Drain Charge ^c Q_g $V_{DS} = -20$ V, $V_{GS} = -10$ V, $I_D = -14$ A 13.5 Ω Gate-Drain Charge ^c Q_g $f = 1$ MHz 0.5 2.5	Static							
$ \begin{array}{c c c c c c c } \hline \mbox{Gate Threshold Voltage} & V_{GS}(h) & V_{DS} = V_{GS}, h = .250 \ \mu & .1 & .2.5 &$	Drain-Source Breakdown Voltage	V_{DS}	$V_{DS} = 0 V, I_{D} = -250 \mu A$	- 60			V	
$ \begin{array}{ c c c c c } \hline V_{DS} = -60 \ V, V_{GS} = 0 \ V \\ \hline V_{DS} = -60 \ V, V_{GS} = 0 \ V, V_{J} = 125 \ ^{\circ}C & & & -50 \\ \hline V_{DS} = -60 \ V, V_{GS} = 0 \ V, V_{J} = 125 \ ^{\circ}C & & & -250 \\ \hline V_{DS} = -60 \ V, V_{GS} = 0 \ V, V_{J} = 150 \ ^{\circ}C & & & -250 \\ \hline V_{DS} = -60 \ V, V_{GS} = 0 \ V, V_{J} = 150 \ ^{\circ}C & & & -250 \\ \hline V_{DS} = -60 \ V, V_{GS} = 0 \ V, V_{J} = 150 \ ^{\circ}C & & & -250 \\ \hline V_{DS} = -60 \ V, V_{GS} = 0 \ V, V_{J} = 150 \ ^{\circ}C & & & -250 \\ \hline V_{DS} = -60 \ V, V_{GS} = 0 \ V, V_{DS} = -10 \ V & -30 & & & & & & & & & & & & & & & & & & &$	Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	- 1		- 2.5	v	
$ \begin{array}{ c c c c c } \hline Zero Gate Voltage Drain Current & I_{DSS} & V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 125 \ ^{\circ}{\rm C} & & & -50 \\ \hline V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 150 \ ^{\circ}{\rm C} & & & -250 \\ \hline V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 150 \ ^{\circ}{\rm C} & & & -250 \\ \hline V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 150 \ ^{\circ}{\rm C} & & & -250 \\ \hline V_{DS} = -60 V, V_{GS} = 0 V, T_{J} = 150 \ ^{\circ}{\rm C} & & & -250 \\ \hline V_{DS} = -60 V, V_{GS} = -10 V, V_{DS} = -10 V & -30 & & & & & & & & & & & & & & & & & & &$	Gate-Body Leakage	I _{GSS}	20 00			± 250	nA	
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline & $V_{DS} = -60 \ V, V_{GS} = 0 \ V, T_J = 150 \ ^{\circ} C & $ & $ & $ & $ & $ & $ & $ & $ & $ &$			$V_{DS} = -60 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			- 1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}				- 50	μA	
$ \begin{array}{ c c c c c c } \hline Prain-Source On-State Resistance^a & R_{DS(on)} & V_{GS} = -10 \ V, \ I_D = -14 \ A & 0.050 & I & 0.060 & I & 0.060 & I & I & I & 0.060 & I & I & 0.060 & I & I & 0.060 & I & I & 0.$			$V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 150 \text{ °C}$			- 250		
$\begin{array}{ c c c c c } \hline Prain-Source On-State Resistance^{a} & R_{DS(on)} & V_{GS} = -4.5 \ V, \ I_{D} = -12 \ A & 0.060 & I & I & I & I & I & I & I & I & I & $	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le$ - 10 V, V_{GS} = - 10 V	- 30			А	
Forward Transconductance ^a y_{GS} v_{GS} $e^{-1.2 \ A}$ 0.060° $e^{-1.2 \ A}$		P	V _{GS} = - 10 V, I _D = - 14 A		0.050		Ω	
$ \begin{array}{ c $	Drain-Source On-State Resistance	NDS(on)	V _{GS} = - 4.5 V, I _D = - 12 A		0.060			
$ \begin{array}{c c c c c c c c c } \hline Input Capacitance & C_{iss} \\ \hline Output Capacitance & C_{oss} \\ \hline Output Capacitance & C_{rss} \\ \hline Output Capacitance & C_{rss} \\ \hline Total Gate Charge^{\circ} & Q_g \\ \hline Gate-Source Charge^{\circ} & Q_{gd} \\ \hline Gate Resistance & R_g & f=1 MHz \\ \hline Gate Resistance & R_g & f=1 MHz \\ \hline Unro-On Delay Time^{\circ} & t_{d(on)} \\ \hline Rise Time^{\circ} & t_{r} \\ \hline Turn-Off Delay Time^{\circ} & t_{d(off)} \\ \hline Fall Time^{\circ} & t_{f} \\ \hline Index Capacitance & It_{f} \\ \hline Data - 10 A, V_{GEN} = -10 V, R_g = 1 \Omega \\ \hline Data - 10 A, V_{GS} = 0 V \\ \hline Output Capacitance & It_{SM} \\ \hline Presence Continuous Current & I_{SM} \\ \hline Presence Recovery Time & t_{rr} \\ \hline Presence Recovery Current & I_{RM(REC)} \\ \hline Presence Recovery Current & I_{RM(REC)} \\ \hline Data - 10 A, dI/dt = 100 A/\mus \\ \hline Data - 10$	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 20 V, I _D = - 14 A		40		S	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b		· · · · · ·					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}			1765		pF	
$ \begin{array}{c c c c c c c c c } \hline Total Gate Charge^{c} & Q_{g} & & & & & & & & & & & & & & & & & & &$	Output Capacitance	C _{oss}	V _{GS} = 0 V, V _{DS} = - 20 V, f = 1 MHz		230			
$ \begin{array}{c c c c c c c } \hline Gate-Source Charge^{C} & Q_{gs} & $V_{DS} = -20 \ V, \ V_{GS} = -10 \ V, \ I_{D} = -14 \ A & 13.5 & 14 & 14 & 14 & 14 & 15 & 14 & 15 & 16 & $$	Reverse Transfer Capacitance	C _{rss}			180			
$ \begin{array}{c c c c c c } \hline Gate-Drain Charge^{c} & Q_{gd} & & & & & & & & & & & & & & & & & & &$	Total Gate Charge ^c	Qg			67			
$\begin{tabular}{ c c c c c } \hline Gate Resistance & R_g & f = 1 \ MHz & 0.5 & 2.5 & 5 & \Omega \\ \hline Turn-On Delay Time^C & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge ^c	Q _{gs}	$V_{DS} = -20 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -14 \text{ A}$		13.5		nC	
$\begin{tabular}{ c c c c c } \hline Turn-On Delay Time^{C} & t_{d(on)} \\ \hline Rise Time^{C} & t_{r} \\ \hline Turn-Off Delay Time^{C} & t_{d(off)} \\ \hline Turn-Off Delay Time^{C} & t_{d(off)} \\ \hline Tall Time^{C} & t_{r} \\ \hline Tall Time^{C} & t_{r$	Gate-Drain Charge ^c	Q _{gd}			14			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	R _g	f = 1 MHz	0.5	2.5	5	Ω	
$\begin{tabular}{ c c c c c c c } \hline Turn-Off Delay Time^c & t_{d(off)} \\ \hline Fall Time^c & t_{f} \\ \hline & & & & & & & & & & & & & & & & & &$	Turn-On Delay Time ^c	t _{d(on)}			10	20		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time ^c	t _r	V_{DD} = - 20 V, R_L = 2 Ω		11	20	ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time ^c	t _{d(off)}	$I_D \cong$ - 10 A, V_{GEN} = - 10 V, R_g = 1 Ω		42	63		
$\begin{tabular}{ c c c c c c c } \hline Continuous Current & I_S & & & & & & & & & & & & & & & & & & &$	Fall Time ^c	t _f			12	20		
Pulsed CurrentI I SMI I Forward VoltageaI V SDI I F = - 10 A, VGS = 0 V- 100AForward VoltageaV V SDI F = - 10 A, VGS = 0 V- 0.8- 1.5VReverse Recovery Timetrr I F = - 10 A, dI/dt = 100 A/µs3857nsPeak Reverse Recovery CurrentI RM(REC)I F = - 10 A, dI/dt = 100 A/µs2.33.5A	Drain-Source Body Diode Ratings a	nd Characteri	stics T _C = 25 °C ^b					
Pulsed CurrentI SM- 100Forward Voltage ^a V_{SD} $I_F = -10 \text{ A}, V_{GS} = 0 \text{ V}$ - 0.8- 1.5VReverse Recovery Time t_{rr} 3857nsPeak Reverse Recovery Current $I_{RM(REC)}$ $I_F = -10 \text{ A}, dI/dt = 100 \text{ A/µs}$ 2.33.5A	Continuous Current	۱ _S				- 36	•	
Reverse Recovery Time t_{rr} 3857nsPeak Reverse Recovery Current $I_{RM(REC)}$ $I_F = -10 \text{ A}, dI/dt = 100 \text{ A/}\mu s$ 2.33.5A	Pulsed Current	I _{SM}				- 100	A	
Peak Reverse Recovery CurrentIRM(REC)IF = - 10 A, dl/dt = 100 A/µs2.33.5A	Forward Voltage ^a	V _{SD}	I _F = - 10 A, V _{GS} = 0 V		- 0.8	- 1.5	V	
	Reverse Recovery Time	t _{rr}			38	57	ns	
Reverse Recovery Charge Q _{rr} 40 60 nC	Peak Reverse Recovery Current	I _{RM(REC)}	I _F = - 10 A, dl/dt = 100 A/μs		2.3	3.5	А	
	Reverse Recovery Charge	Q _{rr}	1		40	60	nC	

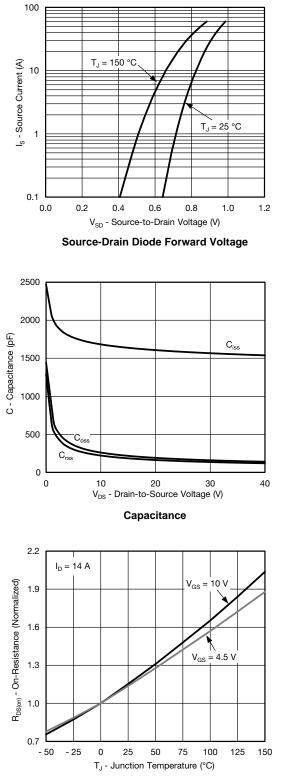
Notes:


a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %. b. Guaranteed by design, not subject to production testing.

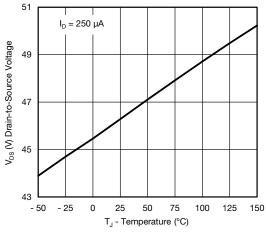
c. Independent of operating temperature.

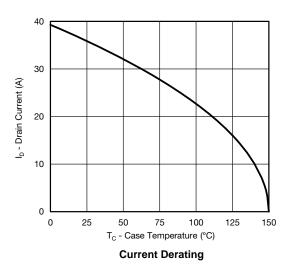

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

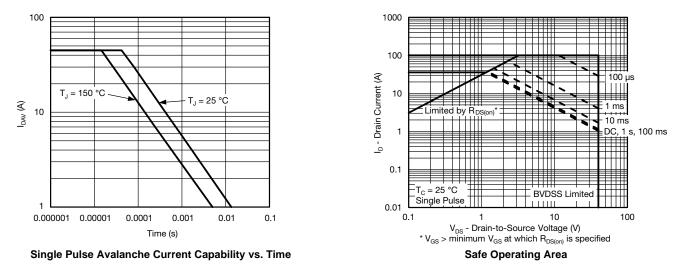
semi.com

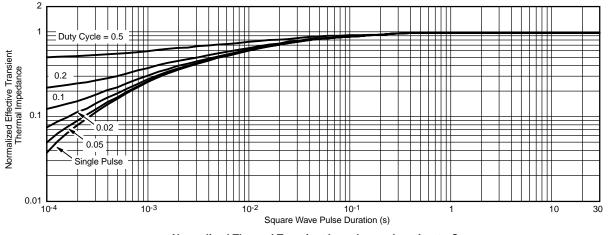

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

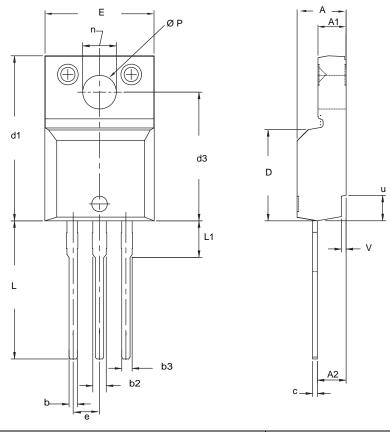
服务热线:400-655-8788




On-Resistance vs. Junction Temperature


Threshold Voltage


Drain Source Breakdown vs. Junction Temperature


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Case

TO-220 FULLPAK (HIGH VOLTAGE)

	MILLIMETERS		INCHES	
DIM.	MIN.	MAX.	MIN.	MAX.
А	4.570	4.830	0.180	0.190
A1	2.570	2.830	0.101	0.111
A2	2.510	2.850	0.099	0.112
b	0.622	0.890	0.024	0.035
b2	1.229	1.400	0.048	0.055
b3	1.229	1.400	0.048	0.055
С	0.440	0.629	0.017	0.025
D	8.650	9.800	0.341	0.386
d1	15.88	16.120	0.622	0.635
d3	12.300	12.920	0.484	0.509
E	10.360	10.630	0.408	0.419
е	2.54	BSC	0.100 BSC	
L	13.200	13.730	0.520	0.541
L1	3.100	3.500	0.122	0.138
n	6.050	6.150	0.238	0.242
ØP	3.050	3.450	0.120	0.136
u	2.400	2.500	0.094	0.098
V	0.400	0.500	0.016	0.020

Notes

1. To be used only for process drawing. 2. These dimensions apply to all TO-220, FULLPAK leadframe versions 3 leads. 3. All critical dimensions should C meet $C_{pk} > 1.33$. 4. All dimensions include burrs and plating thickness. 5. No chipping or package damage.

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.