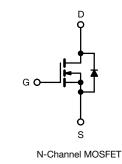


FDP085N10A-VB Datasheet N-Channel 100-V (D-S) 175 °C MOSFET

PRODUCT SUMMARY				
V _{DS} (V)	100			
$R_{DS(on)} (\Omega)$ at $V_{GS} = 10 V$	0. 009			
$R_{DS(on)}(\Omega)$ at $V_{GS} = 4.5 V$	0. 020			
I _D (A)	100			
Configuration	Single			


FEATURES

• TrenchFET[®] Power MOSFET

175 °C Maximum Junction Temperature
Compliant to RoHS Directive 2002/95/EC

ABSOLUTE MAXIMUM RATINGS $T_A = 25 \degree C$, unless otherwise noted					
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V		
Gate-Source Voltage			± 20	v	
Continuous Drain Current (T _J = 150 °C)	T _C = 25 °C	I _D	100		
	T _C = 125 °C	U	75 ^a	А	
Pulsed Drain Current	I _{DM}	300	A		
Avalanche Current	L = 0.1 mH	I _{AS}	75		
Single Pulse Avalanche Energy ^b	L = 0.1 mm	E _{AS}	280	mJ	
Maximum Power Dissipation ^b	T_{C} = 25 °C (TO-220AB and TO-263)	PD	250 ^c	W	
	T _A = 25 °C (TO-263) ^d	۰D	3.75		
Operating Junction and Storage Temperat	T _J , T _{stg}	- 55 to 175	°C		

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Limit	Unit	
Junction-to-Ambient	PCB Mount (TO-263) ^d	R _{thJA}	40		
Sunction-to-Ambient	Free Air (TO-220AB)		62.5	°C/W	
Junction-to-Case		R _{thJC}	0.6		

Notes:

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

c. Independent of operating temperature.

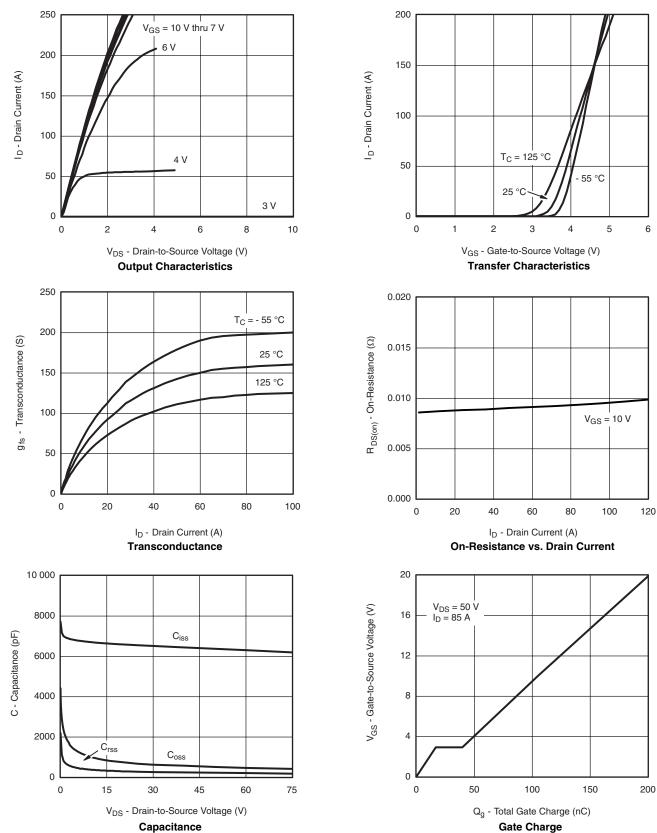
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Static V </th <th colspan="6">SPECIFICATIONS $T_J = 25 \text{ °C}$, unless otherwise noted</th> <th></th>	SPECIFICATIONS $T_J = 25 \text{ °C}$, unless otherwise noted							
$ \begin{array}{ c c c c } \hline Drain-Source Breakdown Voltage V_{DS} $V_{GS} = 0 V, I_{D} = 250 \ \mu A$ 100 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$ \begin{array}{ c c c c } \hline Gate-Threshold Voltage & V_{GS(th)} & V_{DS} = V_{GS}, l_{D} = 250 \mu A & 2 & 4 \\ \hline Gate-Body Leakage & l_{GSS} & V_{DS} = 0 V, V_{GS} = \pm 20 V & 1 & \pm 100 & n \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 1 \\ \hline V_{DS} = 100 V, V_{GS} = 0 V & 1 & 1 & 0 & 1 \\ \hline V_{GS} = 10 V, l_{D} = 30 A & 0 0.009 & 1 \\ \hline V_{GS} = 10 V, l_{D} = 30 A & 0 0.020 & 1 \\ \hline V_{GS} = 10 V, l_{D} = 30 A T_{J} = 125 ^{\circ}C & 0 0.023 & 1 \\ \hline V_{GS} = 10 V, l_{D} = 30 A T_{J} = 125 ^{\circ}C & 0 0.030 & 1 \\ \hline V_{GS} = 10 V, l_{D} = 30 A T_{J} = 175 ^{\circ}C & 0 0.030 & 1 \\ \hline V_{GS} = 10 V, l_{D} = 30 A T_{J} = 175 ^{\circ}C & 0 0.030 & 1 \\ \hline V_{GS} = 10 V, l_{D} = 30 A T_{J} = 175 ^{\circ}C & 0 0.030 & 1 \\ \hline Dutput Capacitance & C_{iss} & V_{DS} = 10 V, l_{D} = 30 A 25 & 0 & 0 0.020 & 1 \\ \hline Dutput Capacitance & C_{iss} & V_{DS} = 50 V, V_{DS} = 25 V, f = 1 \text{MHz} & 665 & 1 & 0 \\ \hline Gate-Source Charge^{\circ} & Q_{g} & V_{DS} = 50 V, V_{DS} = 50 V, V_{DS} = 10 V, l_{D} = 85 A 177 & 1 \\ \hline Gate-Drain Charge^{\circ} & Q_{gd} & V_{DS} = 50 V, V_{SS} = 10 V, l_{D} = 85 A 177 & 1 \\ \hline Gate-Drain Charge^{\circ} & Q_{gd} & V_{DS} = 50 V, V_{SS} = 10 V, l_{D} = 85 A 0 0 135 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 195 & 130 & 135 & 130 195 & $	Static	-		•	•	•		
$ \begin{array}{c c c c c c } \hline \mbox{Gate-Threshold Voltage} & V_{GS}(m) & V_{DS} = V_{GS}, b_{2} = 250 \ \mu & 2 & 4 & 100 & 10 \\ \hline \mbox{Gate-Body Leakage} & I_{GSS} & V_{DS} = 0 \ V, V_{GS} = 0 \ V, $	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_D = 250 \mu A$	100			V	
$ \begin{array}{ c c c c c } \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 10 \ V, \ V_{DS} = 10 \ V \\ \hline V_{DS} = 10 \ V, \ V_{DS} = 10 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V \\ \hline V_{GS} = 10 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline V_{DS} = 10 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline V_{DS} = 10 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline V_{DS} = 10 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline V_{DS} = 10 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline V_{DS} = 10 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline V_{DS} = 10 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline Input \ Capacitance \ C_{ISS} \ V_{DS} = 0 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline Input \ Capacitance \ C_{ISS} \ V_{DS} = 0 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline Intr \ Capacitance \ C_{ISS} \ C_{ISS} \ V_{DS} = 10 \ V, \ V_{DS} = 25 \ V, \ I \\ \hline Intr \ Capacitance \ C_{ISS} \ C_{IS} \ V_{DS} = 50 \ V, \ V_{DS} = 10 \ V, \ I_{D} = 85 \ A \ I \ I^{1} \ I^{$	Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2		4	v	
$ \frac{ V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 125 ^{\circ} \text$	Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			± 100	nA	
$ \begin{array}{ c c c c c c } \hline V_{DS} = 100 \ V, V_{GS} = 0 \ V, T_{J} = 175 \ ^{\circ} C & 1 & 1 & 250 \\ \hline V_{DS} = 10 \ V, V_{GS} = 10 \ V, V_{DS} = 10 \ V & 120 & 1 & 120 \\ \hline V_{DS} = 10 \ V, I_{D} = 30 \ A & 0.009 & 1 & 0.020 \\ \hline V_{GS} = 10 \ V, I_{D} = 30 \ A, T_{J} = 125 \ ^{\circ} C & 0.023 & 1 & 0.020 \\ \hline V_{GS} = 10 \ V, I_{D} = 30 \ A, T_{J} = 125 \ ^{\circ} C & 0.023 & 1 & 0.020 \\ \hline V_{GS} = 10 \ V, I_{D} = 30 \ A, T_{J} = 175 \ ^{\circ} C & 0.023 & 1 & 0.020 \\ \hline V_{GS} = 10 \ V, I_{D} = 30 \ A, T_{J} = 175 \ ^{\circ} C & 0.023 & 1 & 0.020 \\ \hline V_{GS} = 10 \ V, I_{D} = 30 \ A, T_{J} = 175 \ ^{\circ} C & 0.030 & 1 & 0.020 \\ \hline Forward Transconductance^{a} & 9_{Is} & V_{DS} = 15 \ V, I_{D} = 30 \ A \ T_{J} = 175 \ ^{\circ} C & 0.030 & 1 & 0.020 \\ \hline Parmic^{b} & V_{DS} = 15 \ V, I_{D} = 30 \ A, T_{J} = 175 \ ^{\circ} C & 0.030 & 1 & 0.020 \\ \hline Dutput Capacitance & C_{Iss} & V_{OS} = 0 \ V, V_{DS} = 25 \ V, I_{D} = 30 \ A \ T_{J} = 10 \ ^{\circ} C \ ^{\circ} C$			$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}$			1		
$ \begin{array}{ c c c c c c } \hline \text{On-State Drain Current}^a & I_{D(on)} & V_{DS} = 25 V, V_{GS} = 10 V & 120$	Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$			50	μΑ	
$ \begin{array}{ c c c c c c } \mbox{Prime} \mbox{Charge}^{0} & \mbox{Charge}$			$V_{DS} = 100 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 175 ^{\circ}\text{C}$			250		
$ \begin{array}{ c c c c c c c } \hline Paper Part Part Part Part Part Part Part Par$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} = \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	120			А	
$ \begin{array}{ c c c c c c } \hline PDS(on) & PDS($			V _{GS} = 10 V, I _D = 30 A		0.009		1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		В	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 20 \text{ A}$		0.020		0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Drain-Source On-State Resistance ^a	nDS(on)	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 30 \text{ A}, \text{ T}_{J} = 125 ^{\circ}\text{C}$		0.023		Ω	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 30 \text{ A}, \text{ T}_{J} = 175 ^{\circ}\text{C}$		0.030			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 30 A	25			S	
$ \begin{array}{ c c c c c c } \hline Output Capacitance & C_{OSS} & V_{GS} = 0 \ V, \ V_{DS} = 25 \ V, \ f = 1 \ MHz & 665 & 0 & 0 & 0 \\ \hline Reverse Transfer Capacitance & C_{rss} & & & & & & & & & & & & & & & & & & $	Dynamic ^b	-		•	•	•		
Reverse Transfer Capacitance C_{rss} 265 105 160	Input Capacitance	C _{iss}			4700		pF	
$ \begin{array}{ c c c c c } \hline Total Gate Charge^{c} & Q_{g} & & & & & & & & & & & & & & & & & & &$	Output Capacitance	C _{oss}	$V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz$		665			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}	7		265			
$ \begin{array}{ c c c c c c } \hline Gate-Drain Charge^{^{C}} & Q_{gd} & 23 & 2 \\ \hline Turn-On Delay Time^{^{C}} & $t_{d(on)}$ \\ \hline Rise Time^{^{C}} & t_{r} & $V_{DD} = 50 \ V, \ R_L = 0.6 \ \Omega$ \\ I_D = 85 \ A, \ V_{GEN} = 10 \ V, \ R_g = 2.5 \ \Omega$ & 90 & 135 \\ \hline I_D = 85 \ A, \ V_{GEN} = 10 \ V, \ R_g = 2.5 \ \Omega$ & 130 & 195 \\ \hline Source-Drain Diode Ratings and Characteristics \ T_C = $25 \ ^{Cb}$ & $V_{DD} = 50 \ V, \ R_g = 2.5 \ \Omega$ & 130 & 195 & $V_{DD} = 50 \ V, \ R_g = 2.5 \ \Omega$ & 130 & 195 & $V_{DD} = 50 \ V, \ R_g = 2.5 \ \Omega$ & 130 & 195 & $V_{DD} = 50 \ V, \ R_g = 2.5 \ \Omega$ & $V_{DD} = 50 \ V, \ R_g = 50 \ V, \ $	Total Gate Charge ^c	Qg			105	160		
$\begin{tabular}{ c c c c c c c c c c c } \hline Turn-On Delay Time^{C} & t_{d(on)} \\ \hline Rise Time^{C} & t_{r} & V_{DD} = 50 \ V, \ R_L = 0.6 \ \Omega & 90 & 135 \\ \hline Turn-Off \ Delay Time^{C} & t_{d(off)} & I_D \cong 85 \ A, \ V_{GEN} = 10 \ V, \ R_g = 2.5 \ \Omega & 55 & 85 \\ \hline Fall \ Time^{C} & t_{f} & 130 & 195 \\ \hline \hline Source-Drain \ Diode \ Ratings \ and \ Characteristics \ T_C = 25 \ ^{Cb} \\ \hline \hline Continuous \ Current & I_S & $$ I = 0 \ Characteristics \ T_C = 25 \ ^{Cb} \\ \hline \hline Pulsed \ Current & I_{SM} & $$ I = 0 \ Characteristics \ T_C = 240 \ T_C \ T$	Gate-Source Charge ^c	Q _{gs}	$V_{DS} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 85 \text{ A}$		17		nC	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge ^c	Q _{gd}	7		23		1	
$\begin{tabular}{ c c c c c } \hline Turn-Off DelayTime^{C} & t_{d(off)} & I_D \cong 85 \mbox{ A}, \mbox{ V}_{GEN} = 10 \mbox{ V}, \mbox{ R}_g = 2.5 \mbox{ \Omega} & 55 & 85 & 130 & 195 & 130 & 130 & 195 & 130 & 130 & 195 & 130 & 130 & 195 & 130 &$	Turn-On Delay Time ^c	t _{d(on)}			12	25		
$\begin{tabular}{ c c c c c c c } \hline Turn-Off DelayTime^c & t_d(off) \\ \hline Fall Time^c & t_f & & & & & & & & & & & & & & & & & & &$	Rise Time ^c	t _r	V_{DD} = 50 V, R_L = 0.6 Ω		90	135		
Source-Drain Diode Ratings and Characteristics $T_C = 25 \degree C^b$ Continuous Current I_S Pulsed Current I_{SM} 240	Turn-Off DelayTime ^c	t _{d(off)}	$\text{I}_\text{D} \cong$ 85 A, V_GEN = 10 V, R_g = 2.5 Ω		55	85	ns	
Continuous Current IS 85 Pulsed Current ISM 240	Fall Time ^c	t _f			130	195		
Pulsed Current I _{SM} 240	Source-Drain Diode Ratings and Characteristics $T_C = 25 \ ^{\circ}C^b$							
Pulsed Current I _{SM} 240	Continuous Current	۱ _S				85	۸	
Forward Voltage ^a V_{SD} $I_F = 85 \text{ A}, V_{GS} = 0 \text{ V}$ 1.0 1.5	Pulsed Current	I _{SM}				240	A	
	Forward Voltage ^a	V _{SD}	I _F = 85 A, V _{GS} = 0 V		1.0	1.5	V	
Reverse Recovery Time trr 85 140 r	Reverse Recovery Time	t _{rr}			85	140	ns	
Peak Reverse Recovery CurrentIRM(REC)IF = 50 A, dI/dt = 100 A/ μ s4.57	Peak Reverse Recovery Current	I _{RM(REC)}	I _F = 50 A, dl/dt = 100 A/μs		4.5	7	А	
Reverse Recovery Charge Q _{rr} 0.17 0.35 H	Reverse Recovery Charge	Q _{rr}	1		0.17	0.35	μC	

Notes:

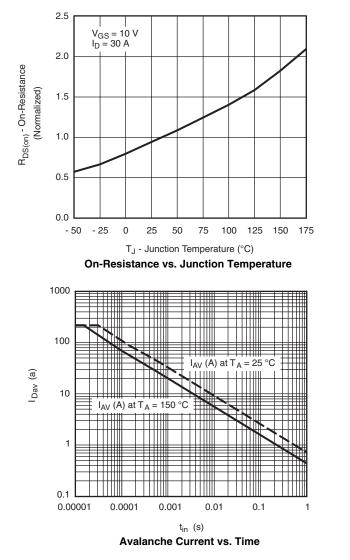
a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

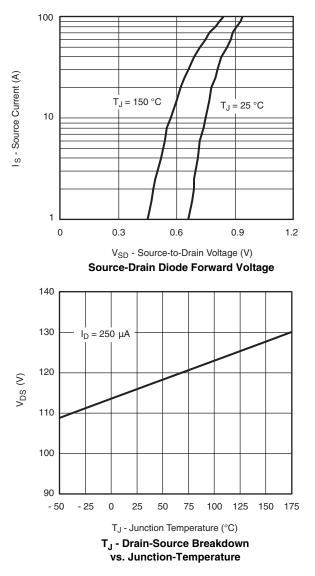
b. Guaranteed by design, not subject to production testing.


c. Independent of operating temperature.

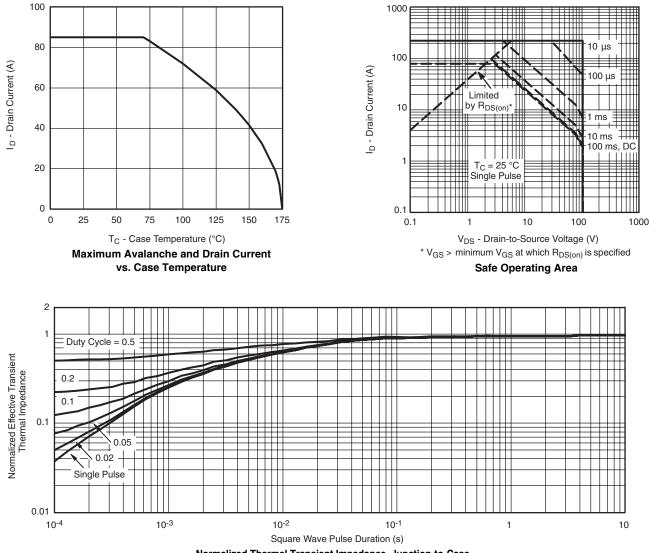
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

VBsemi Bsemi.com

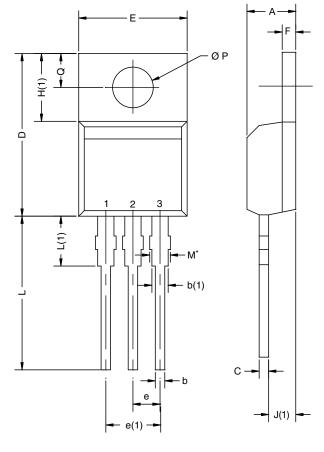



TYPICAL CHARACTERISTICS $T_A = 25 \text{ °C}$, unless otherwise noted

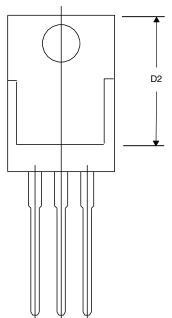
TYPICAL CHARACTERISTICS $T_A = 25 \text{ °C}$, unless otherwise noted



FDP085N10A-VB


THERMAL RATINGS

Normalized Thermal Transient Impedance, Junction-to-Case


TO-220AB

	MILLIMETERS		INC	HES	
DIM.	MIN.	MAX.	MIN.	MAX.	
А	4.25	4.65	0.167	0.183	
b	0.69	1.01	0.027	0.040	
b(1)	1.20	1.73	0.047	0.068	
С	0.36	0.61	0.014	0.024	
D	14.85	15.49	0.585	0.610	
D2	12.19	12.70	0.480	0.500	
E	10.04	10.51	0.395	0.414	
е	2.41	2.67	0.095	0.105	
e(1)	4.88	5.28	0.192	0.208	
F	1.14	1.40	0.045	0.055	
H(1)	6.09	6.48	0.240	0.255	
J(1)	2.41	2.92	0.095	0.115	
L	13.35	14.02	0.526	0.552	
L(1)	3.32	3.82	0.131	0.150	
ØР	3.54	3.94	0.139	0.155	
Q	2.60	3.00	0.102	0.118	
ECN: T14-0413-Rev. P, 16-Jun-14 DWG: 5471					

Note

* M = 1.32 mm to 1.62 mm (dimension including protrusion) Heatsink hole for HVM

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.