

RAQ045P01TCR-VB Datasheet

P-Channel 30 V (D-S) MOSFET

PRODUC	CT SUMMARY		
V _{DS} (V)	R _{DS(on)} (Ω) Typ.	I _D (A) ^a	Q _g (Typ.)
	0.046 at V _{GS} = - 10 V	- 5.6	
- 30	0.049 at V _{GS} = - 6 V	- 5	11.4 nC
	0.054 at V _{GS} = - 4.5 V	-4.5	

FEATURES

- Trench Power MOSFET
- 100 % R_g Tested

- For Mobile Computing
 - Load Switch
 - Notebook Adaptor Switch
 - DC/DC Converter

Pb-free
RoHS
COMPLIANT
HALOGEN
EDEE

Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V _{DS}	- 30	N
Gate-Source Voltage		V _{GS}	± 20	V
	T _C = 25 °C		- 5.6	
Continuous Drain Current (T. 150 °C)	T _C = 70 °C		- 5.1	
Continuous Drain Current ($T_J = 150 \ ^{\circ}C$)	T _A = 25 °C	I _D	- 5.4 ^{b,c}	
	T _A = 70 °C		- 4.3 ^{b,c}	A
Pulsed Drain Current (t = 100 µs)		I _{DM}	- 18	
Continuus Source Drain Diado Current	T _C = 25 °C		- 2.1	
ontinous Source-Drain Diode Current	T _A = 25 °C	I _S	- 1 ^{b,c}	
	T _C = 25 °C		2.5	
Marian David Distinction	T _C = 70 °C		1.6	14/
Maximum Power Dissipation	T _A = 25 °C	P _D	1.25 ^{b,c}	W
	T _A = 70 °C	1	0.8 ^{b,c}	
Operating Junction and Storage Temperatur	e Range	T _J , T _{stg}	- 55 to 150	°C

THERMAL RESISTANCE RATINGS

Parameter		Symbol	Typical	Maximum	Unit
Maximum Junction-to-Ambient ^{b,d}	$t \le 5 s$	R _{thJA}	75	100	°C/W
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	40	50	0/10

Notes:

a. Based on T_C = 25 °C.
b. Surface mounted on 1" x 1" FR4 board.

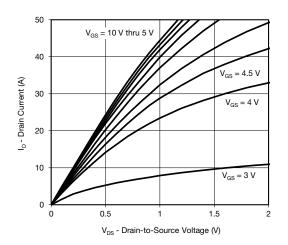
c. t = 5 s.

d. Maximum under steady state conditions is 166 °C/W.

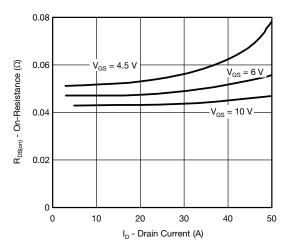
$\begin{split} \textbf{SPECIFICATIONS}(T_{j} = 25 °C, unless otherwise noted) \\ \hline Parameter Source Breakdown Voltage VDB Source Treshold Voltage VDB VDB VDB VDB - 250 \muA - 30 MD VDB VDB - 250 \muA - 30 MD VDB VDB VDB - 250 \muA - 30 MD VDB VDB - 19 MD VDB - 19 MD VDB - 19 MD VDB - 250 \muA - 4 MD VDB - 19 MD VDB - 250 \muA - 19 MD VDB - 19 MD A - 10 MD VDB - 250 \muA - 10 - 19 MD VDB - 250 \muA - 0.5 MD - 10 MD VDB - 250 \muA - 0.5 MD - 2.0 MD A - 2.0 VDB - 250 \muA - 0.5 MD - 2.0 MD A - 2.0 VDB - 250 \muA - 0.5 MD - 2.0 MD A - 2.0 VDB - 250 \muA - 0.5 MD - 2.0 MD - 2.5 MD - 2.5$							
	SPECIFICATIONS ($T_J = 25 \ ^{\circ}C$,	unless othe	erwise noted)				
$\begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage & V_DS & V_GS = 0 V, I_D = -250 \ \mu A & -30 & & V \\ V_DS temperature Coefficient & \Delta V_{OS}^{TJ} & I_D = -250 \ \mu A & -19 & & \\ & I_D = -250 \ \mu A & -0.5 & -2.0 & V \\ \hline Gate-Source Threshold Voltage & V_{OS}(m) & V_{DS} = V_{OS}, I_D = -250 \ \mu A & -0.5 & -2.0 & V \\ \hline Gate-Source Threshold Voltage & V_{OS}(m) & V_{DS} = 0 V, V_{GS} = 20 \ V & = 10 & nA \\ \hline V_{DS} = -30 \ V_{OS} = 0 \ V, V_{OS} = 0 \ V & = 55 \ C & -5 & A \\ \hline V_{DS} = -30 \ V_{OS} = 0 \ V, V_{OS} = 0 \ V & -2.5 & A \\ \hline On-State Drain Current^{0} & I_D(m) & V_{DS} = -54 \ A & 0.046 & & \\ \hline V_{OS} = -6V, V_{OS} = -10 \ V, I_D = -3.4 \ A & 0.046 & & \\ \hline V_{OS} = -6V, V_{OS} = -10 \ V, I_D = -3.4 \ A & 0.046 & & \\ \hline Oracle A \ V_{OS} = -15 \ V, V_{OS} = 0 \ V, I_D = -3.4 \ A & 18 & & \\ \hline Drain-Source On-State Resistance^{0} & Q_{B} & V_{DS} = -15 \ V, V_{OS} = -10 \ V, I_D = -5.4 \ A & 18 & & \\ \hline Drain-Capacitance & C_{ms} & & \\ \hline Drain-Gatiance & C_{ms} & & \\ \hline Total Gate Charge & Q_{g} & V_{DS} = -15 \ V, V_{OS} = -10 \ V, I_D = -5.4 \ A & 3.4 & & \\ \hline Turn-On Delay Time & I_4 \ U_{d(m)} & V_{DS} = -15 \ V, V_{OS} = -10 \ V, I_D = -5.4 \ A & 3.4 & \\ \hline Turn-On Delay Time & I_4 \ U_{d(m)} & \\ \hline Turn-On Delay Time & I_4 \ U_{d(m)} & \\ \hline Turn-On Delay Time & I_4 \ U_{d(m)} & \\ \hline Turn-On Delay Time & I_4 \ U_{d(m)} & \\ \hline Turn-On Delay Time & I_4 \ U_{d(m)} & \\ \hline Drain-Source Dorbin Charace & R_{g} & f = 1 \ MHz & 1.5 \ 7.7 \ 15.4 \ Q \ C & \\ \hline Drain-Source Drain Dide Characetristics & \\ \hline Turn-On Delay Time & I_4 \ U_{d(m)} & \\ \hline Drain-Source Drain Dide Characetristics & \\ \hline Drain-Source Drain Di$	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static				1	1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_D = -250 \mu A$	- 30			V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	la = - 250 µA		- 19		m\//°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	10 - 200 p/		4		IIIV/ C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	- 0.5		- 2.0	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V$, $V_{GS} = \pm 20 V$			± 100	nA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zerra Octo Malta va Davia Octoval	1	$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			- 1	
$ \begin{array}{ c c c c c c } \hline V_{GS} & -10 \ V, \ I_D = \cdot 4.4 \ A & 0.046 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.046 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.046 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline V_{GS} & -6 \ V, \ I_D = \cdot 4.4 \ A & 0.049 & \\ \hline U_{DS} & -15 \ V, \ V_{GS} = -15 \ V, \ V$	Zero Gate voltage Drain Current	DSS	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$			- 5	μΑ
$ \begin{array}{ c c c c c c } \hline Drain-Source On-State Resistance^a & R_{DS(on)} & V_{GS} = -6 \ V, \ I_D = -4 \ A & 0.049 & I & 0.049 & I & 0.049 & I & V_{GS} = -6 \ V, \ I_D = -3.6 \ A & 0.054 & I & S & I & S & I & I & S & S & I & I$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le$ - 5 V, V_{GS} = - 10 V	- 2.5			A
$ \begin{array}{ c c c c c c c c } \hline V_{GS} = -4.5 \ V, \ I_{D} = -3.6 \ A & 0.054 \\ \hline V_{CS} = -4.5 \ V, \ I_{D} = -3.4 \ A & 18 \\ \hline V_{DS} = -15 \ V, \ V_{DS} = -15 \ V, \ I_{D} = -3.4 \ A & 18 \\ \hline S \\ \hline \hline Dynamicb \\ \hline \\ $			V _{GS} =- 10 V, I _D = - 4.4 A		0.046		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} =- 6 V, I _D = - 4 A		0.049		Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{GS} =- 4.5 V, I _D = - 3.6 A		0.054		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 3.4 A		18		S
$ \begin{array}{ c c c c c } \hline \mbox{Output Capacitance} & \mbox{C}_{0ss} & \mbox{V}_{DS} = -15 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & 150 & \mbox{M} & \m$	Dynamic ^b	•	•				•
$ \begin{array}{ c c c c c } \hline \mbox{Output Capacitance} & \mbox{C}_{0ss} & \mbox{V}_{DS} = -15 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & 150 & \mbox{M} & \m$	Input Capacitance	C _{iss}			1295		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance		V _{DS} = - 15 V, V _{GS} = 0 V, f = 1 MHz		150		рF
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			130		
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Tatal Qata Ohanna		V_{DS} = - 15 V, V_{GS} = - 10 V, I_{D} = - 5.4 A		24	36	
$ \begin{array}{ c c c c c c } \hline Gate-Source Charge & Q_{gs} & V_{DS} = -15 \ V, \ V_{GS} = -4.5 \ V, \ I_D = -5.4 \ A & 3.4 & & & & & & \\ \hline Gate-Drain Charge & Q_{gd} & & & & & & & & & \\ \hline Gate Resistance & R_g & f = 1 \ MHz & 1.5 & 7.7 & 15.4 & \Omega & & \\ \hline Iurn-On \ Delay Time & t_{d(on)} & & & & & & & & \\ \hline Turn-On \ Delay Time & t_r & & & & & & & & & & \\ \hline Iurn-Off \ Delay Time & t_f & & & & & & & & & & & & \\ \hline Iurn-Off \ Delay Time & t_f & & & & & & & & & & & & & & & \\ \hline Iurn-On \ Delay Time & t_f & & & & & & & & & & & & & & & & & \\ \hline Iurn-On \ Delay Time & t_f & & & & & & & & & & & & & & & & & & \\ \hline Iurn-On \ Delay Time & t_f & & & & & & & & & & & & & & & & & & &$	Iotal Gate Charge	Qg			11.4	17	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge	Q _{gs}	V_{DS} = - 15 V, V_{GS} = - 4.5 V, I_{D} = - 5.4 A		3.4		nC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge				3.8		
$ \begin{array}{ c c c c c } \hline Rise Time & t_r & V_{DD} = -15 \ V, \ R_L = 3.5 \ \Omega & 1 & 4 & 8 \\ \hline Turn-Off \ Delay Time & t_{d(off)} & I_D = -4.3 \ A, \ V_{GEN} = -10 \ V, \ R_g = 1 \ \Omega & 38 & 57 \\ \hline Fall Time & t_f & 6 & 12 \\ \hline Turn-On \ Delay Time & t_{d(on)} & V_{DD} = -15 \ V, \ R_L = 3.5 \ \Omega & 16 & 24 \\ \hline Rise Time & t_r & V_{DD} = -15 \ V, \ R_L = 3.5 \ \Omega & 16 & 24 \\ \hline Turn-Off \ Delay Time & t_{d(off)} & I_D = -4.3 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 30 & 45 \\ \hline Fall Time & t_f & 10 & 20 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Gate Resistance	R _g	f = 1 MHz	1.5	7.7	15.4	Ω
$ \begin{array}{ c c c c c } \hline Rise Time & t_r & V_{DD} = -15 \ V, \ R_L = 3.5 \ \Omega & 1 & 4 & 8 \\ \hline Turn-Off \ Delay Time & t_{d(off)} & I_D = -4.3 \ A, \ V_{GEN} = -10 \ V, \ R_g = 1 \ \Omega & 38 & 57 \\ \hline Fall Time & t_f & 6 & 12 \\ \hline Turn-On \ Delay Time & t_{d(on)} & V_{DD} = -15 \ V, \ R_L = 3.5 \ \Omega & 16 & 24 \\ \hline Rise Time & t_r & V_{DD} = -15 \ V, \ R_L = 3.5 \ \Omega & 16 & 24 \\ \hline Turn-Off \ Delay Time & t_{d(off)} & I_D = -4.3 \ A, \ V_{GEN} = -4.5 \ V, \ R_g = 1 \ \Omega & 30 & 45 \\ \hline Fall Time & t_f & 10 & 20 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Turn-On Delay Time	t _{d(on)}			13	20	
$\begin{tabular}{ c c c c c c } \hline Fail Time & t_f & & & & & & & & & & & & & & & & & & &$	Rise Time		V_{DD} = - 15 V, R_L = 3.5 Ω		4	8	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong$ - 4.3 A, V_GEN = - 10 V, R_g = 1 Ω		38	57	
$\begin{tabular}{ c c c c c c c } \hline Turn-On Delay Time & t_d(on) & & & & & & & & & & & & & & & & & & &$	Fall Time	t _f			6	12	
$\begin{tabular}{ c c c c c c c c c c c } \hline Turn-Off Delay Time & t_{d(off)} & I_D\cong-4.3 \ A, \ V_{GEN}=-4.5 \ V, \ R_g=1 \ \Omega & 30 & 45 \\ \hline fall Time & t_f & 10 & 20 \\ \hline \end{tabular}$	Turn-On Delay Time	t _{d(on)}			28	42	ns
Fall Time t_f 1020Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S $T_C = 25 ^{\circ}C$ -2.1 A Pulse Diode Forward Current (t = 100 µs) I_{SM} $I_S = -4.3 A, V_{GS} = 0 V$ -0.8 -1.2 V Body Diode Voltage V_{SD} $I_S = -4.3 A, V_{GS} = 0 V$ -0.8 -1.2 V Body Diode Reverse Recovery Time t_{rr} $I_F = -4.3 A, dI/dt = 100 A/\mus, T_J = 25 ^{\circ}C$ 7 14 nC Reverse Recovery Fall Time t_a T_a R_a R_a R_a R_a	Rise Time	t _r	V_{DD} = - 15 V, R_L = 3.5 Ω		16	24	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong$ - 4.3 A, V_GEN = - 4.5 V, R_g = 1 Ω		30	45	
$\begin{array}{c c c c c c c c c } \hline Continuous Source-Drain Diode Current & I_S & T_C = 25 \ ^{\circ}C & & -2.1 & \\ \hline Pulse Diode Forward Current (t = 100 \ \mu s) & I_{SM} & & -80 & \\ \hline Body Diode Voltage & V_{SD} & I_S = -4.3 \ A, \ V_{GS} = 0 \ V & -0.8 & -1.2 & V & \\ \hline Body Diode Reverse Recovery Time & t_{rr} & & 15 & 23 & ns & \\ \hline Body Diode Reverse Recovery Charge & Q_{rr} & & \\ \hline Reverse Recovery Fall Time & t_a & & & \\ \hline \end{array}$	Fall Time				10	20	
Pulse Diode Forward Current (t = 100 μ s)I_SM- 80ABody Diode VoltageV_SDI_S = - 4.3 A, V_{GS} = 0 V- 0.8- 1.2VBody Diode Reverse Recovery Time t_{rr} 1523nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -4.3 A, dl/dt = 100 A/\mus, T_J = 25 °C$ 714nCReverse Recovery Fall Time t_a nsnsns	Drain-Source Body Diode Characteristic	cs			1	1	1
Pulse Diode Forward Current (t = 100 µs) I_{SM} - 80Body Diode Voltage V_{SD} $I_S = -4.3 \text{ A}, V_{GS} = 0 \text{ V}$ - 0.8- 1.2VBody Diode Reverse Recovery Time t_{rr} 1523nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = -4.3 \text{ A}, dI/dt = 100 \text{ A/µs}, T_J = 25 \text{ °C}$ 714nCReverse Recovery Fall Time t_a nsnsns	Continuous Source-Drain Diode Current	۱ _S	T _C = 25 °C			- 2.1	٨
Body Diode Reverse Recovery Time t_{rr} 1523nsBody Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a	Pulse Diode Forward Current (t = 100 µs)	I _{SM}				- 80	
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -4.3 \text{ A}, dI/dt = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$ 714nCReverse Recovery Fall Time t_a 8ns	Body Diode Voltage	V _{SD}	$I_{S} = -4.3 \text{ A}, V_{GS} = 0 \text{ V}$		- 0.8	- 1.2	V
Body Diode Reverse Recovery Charge Q_{rr} $I_F = -4.3 \text{ A}, dI/dt = 100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$ 714nCReverse Recovery Fall Time t_a 8ns	Body Diode Reverse Recovery Time	t _{rr}			15	23	ns
Reverse Recovery Fall Time t _a	Body Diode Reverse Recovery Charge	Q _{rr}			7	14	nC
ns ns	Reverse Recovery Fall Time	ta	$I_F = -4.3 \text{ A}, \text{ ul/ul} = 100 \text{ A/} \mu \text{s}, I_J = 25 \text{ °C}$		8		
	Reverse Recovery Rise Time		1 1		7		ns

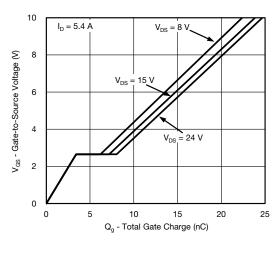
Notes:

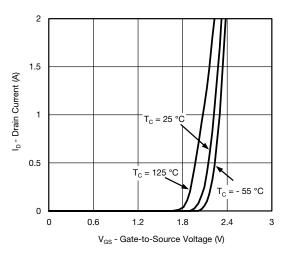
a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

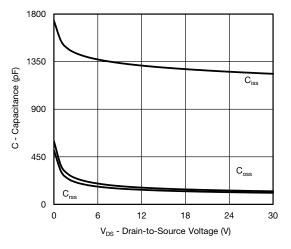

b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



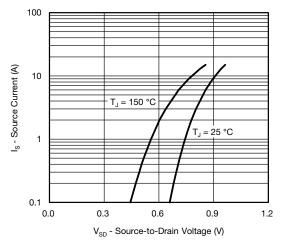



Output Characteristics

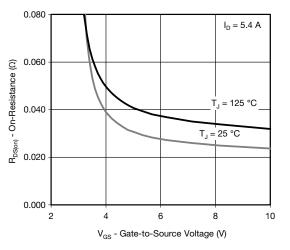

On-Resistance vs. Drain Current

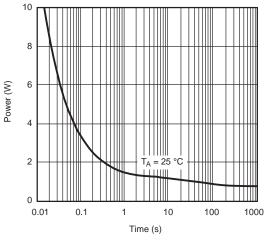
Gate Charge

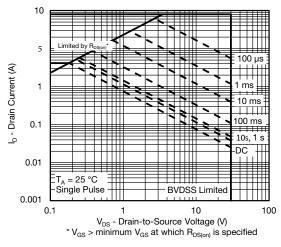
Transfer Characteristics


Capacitance

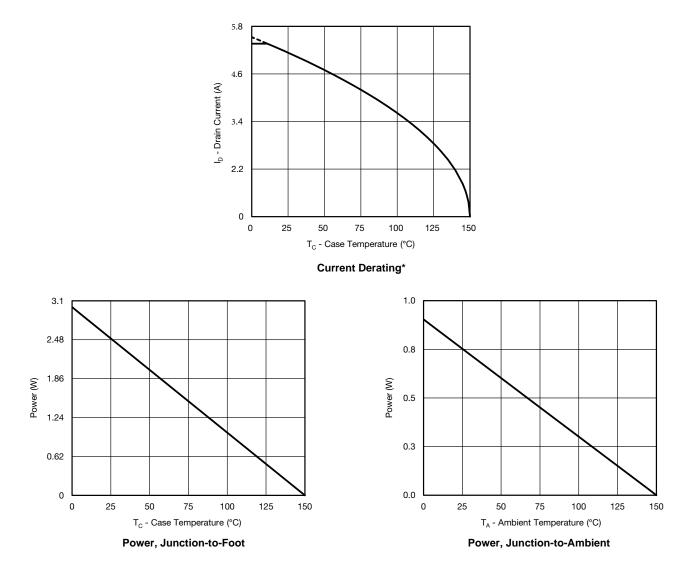
On-Resistance vs. Junction Temperature


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

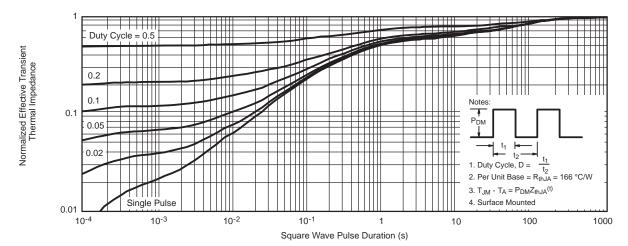

Source-Drain Diode Forward Voltage

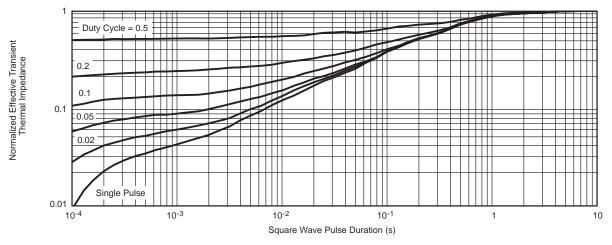

Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage

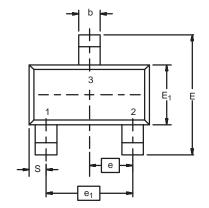

Single Pulse Power (Junction-to-Ambient)

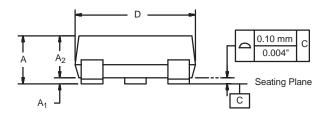
Safe Operating Area, Junction-to-Ambient

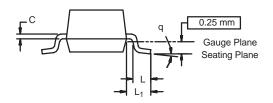

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


* The power dissipation P_D is based on $T_{J(max.)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

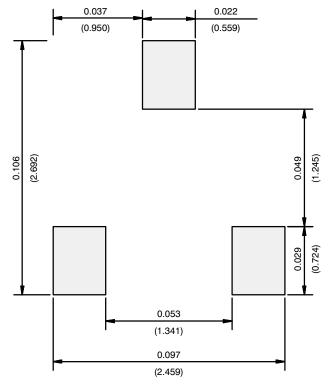
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Normalized Thermal Transient Impedance, Junction-to-Ambient




Normalized Thermal Transient Impedance, Junction-to-Foot

SOT-23 (TO-236): 3-LEAD



Max 1.12 0.10 1.02 0.50 0.18 3.04 2.64 1.40	Min 0.035 0.0004 0.0346 0.014 0.003 0.110 0.083	Max 0.044 0.004 0.040 0.020 0.007 0.120 0.104		
0.10 1.02 0.50 0.18 3.04 2.64	0.0004 0.0346 0.014 0.003 0.110 0.083	0.004 0.040 0.020 0.007 0.120		
1.02 0.50 0.18 3.04 2.64	0.0346 0.014 0.003 0.110 0.083	0.040 0.020 0.007 0.120		
0.50 0.18 3.04 2.64	0.014 0.003 0.110 0.083	0.020 0.007 0.120		
0.18 3.04 2.64	0.003 0.110 0.083	0.007 0.120		
3.04 2.64	0.110 0.083	0.120		
2.64	0.083			
		0.104		
1 40				
1.40	0.047	0.055		
0.95 BSC	0.037	4 Ref		
1.90 BSC		0.0748 Ref		
0.60	0.016	0.024		
0.64 Ref	0.025	5 Ref		
0.50 Ref	0.020) Ref		
8°	3°	8°		
_	0.64 Ref 0.50 Ref	0.64 Ref 0.025 0.50 Ref 0.020		

RAQ045P01TCR-VB

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.