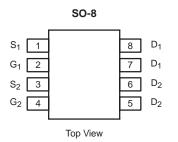


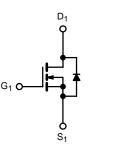
RoHS

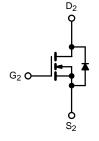
COMPLIANT HALOGEN

FREE

AFN4210S8RG-VB Datasheet Dual N-Channel 30-V (D-S) MOSFET


PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)	Q _g (Typ.)			
30	0.022 at V_{GS} = 10 V	6.8	15 nC			
	0.026 at V _{GS} = 4.5 V	6.0	15110			


FEATURES


- Halogen-free According to IEC 61249-2-21
 Definition
- Trench Power MOSFET
- 100 % UIS Tested
- 100 % Rg Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Set Top Box
- Low Current DC/DC

N-Channel MOSFET

N-Channel MOSFET

ABSOLUTE MAXIMUM RATIN			Limit	l lm:t	
Parameter		Symbol		Unit	
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V _{GS}	± 20	V	
	T _C = 25 °C		6.8 ^a		
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C] I_	5.6		
Continuous Drain Guirent (1j = 150°C)	T _A = 25 °C	I _D	6.2 ^{b, c}		
	T _A = 70 °C		5.2 ^{b, c}	A	
Pulsed Drain Current		I _{DM}	30		
Continuous Source-Drain Diode Current	T _C = 25 °C	- I _S	2.25		
Continuous Source-Drain Diode Current	T _A = 25 °C		1.48 ^{b, c}		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	5		
Single Pulse Avalanche Energy		E _{AS}	1.25	mJ	
	T _C = 25 °C		2.7		
Maximum Dawar Disaination	T _C = 70 °C	– P _D	1.77	w	
Maximum Power Dissipation	T _A = 25 °C		1.78 ^{b, c}	VV	
	T _A = 70 °C		1.14 ^{b, c}		
Operating Junction and Storage Temperatur	e Range	T _J , T _{stg}	- 55 to 150	°C	

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^{a, c, d}	t ≤ 10 s	R _{thJA}	58	70	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	38	45	0/11	

Notes:

a. Package limited, $T_C = 25 \ ^{\circ}C$.

b. Surface Mounted on 1" x 1" FR4 board.

c. t = 10 s.

d. Maximum under Steady State conditions is 110 °C/W.

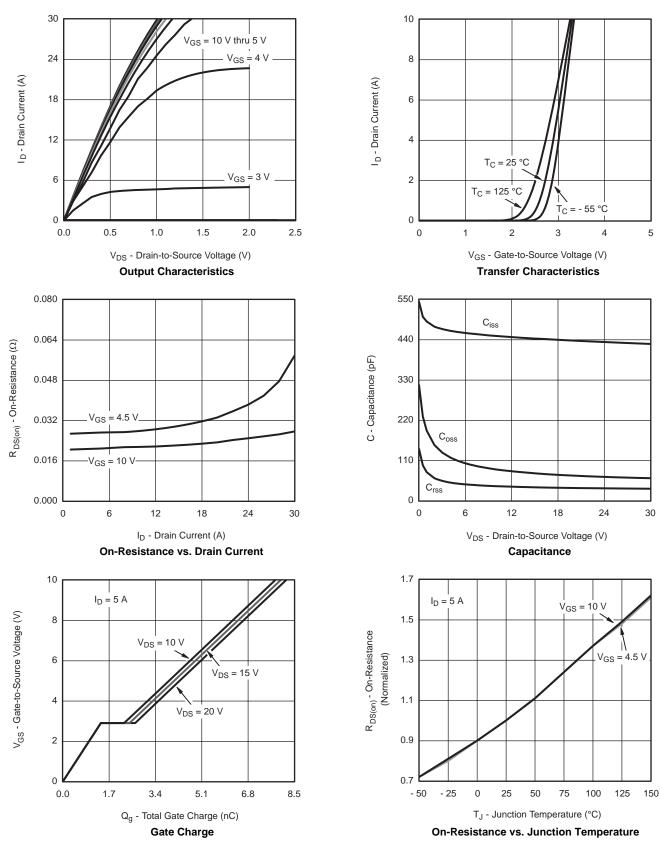
$\begin{array}{ c c c c c c } \hline Parameter & Symbol & Test Conditions & Min. Typ. Max. Unit Static & V_{DS} & V_{OS} = 0 \ V, \ I_D = 250 \ \mu A & 30 & V & V_{OS} & V_{OS} = 0 \ V, \ I_D = 250 \ \mu A & 30 & -5.0 & V_{OS} & V_{OS} & V_{OS} = 0 \ V, \ I_D = 250 \ \mu A & -5.0 & V_{OS} & V_{$	SPECIFICATIONS $T_J = 25 \text{ °C}$, unless otherwise noted								
$ \begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage & V_{DS} & V_{GS} = 0 V, I_D = 250 \ \mu A & 30 & & & & V \\ V_{DS} temperature Coefficient & \Delta V_{DS} / T_J & I_D = 250 \ \mu A & 1.0 & 2.5 & V \\ \hline M_{CS(th)} & V_{DS} = V_{CS}, I_D = 250 \ \mu A & 1.0 & & 2.5 & V \\ \hline Gate-Source Leakage & I_{CSS} & V_{DS} = 0 V, V_{CS} = 420 V & & \pm 100 & nA \\ \hline Cate-Source Leakage & I_{CSS} & V_{DS} = 0 V, V_{CS} = 20 V & & \pm 100 & \mu A \\ \hline V_{DS} = 30 V, V_{CS} = 0 V & J_{L} = 5 ^{\circ} C & & 10 & \mu A \\ \hline On-State Drain Current & I_{DSS} & V_{DS} = 0 V, V_{CS} = 0 V & 10 & & & \\ \hline On-State Drain Current & I_{DSS} & V_{DS} = 10 V, I_D = 5 A & 0.022 & & \\ \hline On-State Drain Current & I_{DSS} & V_{DS} = 10 V, I_D = 5 A & 16 & & \\ \hline Dynamic^{D} & V_{DS} = 10 V, I_D = 5 A & 16 & & \\ \hline Dynamic^{D} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 16 & & \\ \hline Dupt Capacitance & C_{iss} & & \\ \hline Total Gate Charge & Q_{g} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 15 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 15 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 15 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 16 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 16 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 111 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 114 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 114 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 5 A & 111 & 22 & \\ \hline Fall Time & True & The S & & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 15 V, V_{CS} = 10 V, I_D = 10 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & V_{DS} = 10 V, I_D = 10 V, I_D = 10 & & \\ \hline Turn-On Delay Time & I_{d(ori)} & & \\ \hline Turne & The S & & & \\ \hline Turne & The S & & & \\ \hline Turne & The S & & & \\ \hline Turne & The S & & & \\ \hline Turne & The S & & & \\ \hline Turne & The S & & & \\ \hline Turne & The S &$	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_D = 250 \mu A$	30			V		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	L _ 250 uA		32				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA		- 5.0		mV/°C		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1.0		2.5	V		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$			± 100	nA		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zana Orala Malla na Daria Orana at		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$			1			
$ \begin{array}{ c c c c c c c } \hline \mbox{Vas} = 10 \ V, \ \mbox{Vas} = 10 \ V, \ \mbox{Vas} = 4.5 \ V, \ \mbox{Vas} = 4.5 \ V, \ \mbox{Vas} = 4.5 \ V, \ \mbox{Vas} = 10 \ $	Zero Gate Voltage Drain Current	DSS	$V_{DS} = 30 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 55 ^{\circ}\text{C}$			10	μA		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$	10			А		
Forward Transconductance ^a 9fs $V_{GS} = 4.3$, $V_{ID} = 4$ Å 0.026 I Forward Transconductance ^a 9fs $V_{DS} = 10$ V, $I_{D} = 5$ Å 16 S Dynamic ^b Input Capacitance C_{ISS} $V_{DS} = 10$ V, $I_{D} = 5$ Å 16 S Output Capacitance C_{css} $V_{DS} = 15$ V, $V_{GS} = 0$ V, $f = 1$ MHz 586 I I Total Gate Charge Q_g $V_{DS} = 15$ V, $V_{GS} = 10$ V, $I_D = 5$ Å 155 I		D	V _{GS} = 10 V, I _D = 5 A		0.022		Ω		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 4 \text{ A}$		0.026				
$ \begin{array}{ c c c c c c c } \hline Input Capacitance & C_{1SS} \\ \hline Output Capacitance & C_{0SS} \\ \hline Output Capacitance & C_{rSS} \\ \hline \end{tildeliness} \\ \hline \end{tillenss} \\ \hline \end{tildeliness} \\ \hline tillenss$	Forward Transconductance ^a	9 _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 5 \text{ A}$		16		S		
$ \begin{array}{ c c c c c c } \hline Output Capacitance & C_{oss} & V_{DS} = 15 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & 117 & 1 & pF \\ \hline \ Reverse \ Transfer \ Capacitance & C_{rss} & V_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ I_D = 5 \ A & 15 & 1 & 17 & 1 & pF \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Dynamic ^b					•	•		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input Capacitance	C _{iss}			586				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz		117		pF		
$ \begin{array}{ c c c c c c c c c c } \hline \mbox{loc} Charge & \mbox{loc} Q_{gs} & & & & & & & & & & & & & & & & & & &$	Reverse Transfer Capacitance	C _{rss}			55				
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Total Cata Charge	0	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 5 A		15		- nC		
$ \begin{array}{ c c c c c c } \hline Gate-Source Charge & Q_{gs} & V_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 5 \ A \\ \hline Gate-Drain Charge & Q_{gd} & 1.4 & 1.$	Iotal Gale Charge	Q _g			3.7	5.6			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge	Q _{gs}	V_{DS} = 15 V, V_{GS} = 4.5 V, I_D = 5 A		1.4				
$ \begin{array}{c c c c c c c c c c } \hline Turn-On Delay Time & t_d(on) \\ \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 3 \ \Omega & 12 & 24 \\ \hline N_{DD} = 15 \ V, \ R_L = 3 \ \Omega & 11 & 22 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 11 & 22 \\ \hline Rise Time & t_f & & & & & & & & & & & & & & & & & & &$	Gate-Drain Charge	Q _{gd}			1.05				
Rise Timetr $V_{DD} = 15 \ V, \ R_L = 3 \ \Omega$ 55100Turn-Off Delay Time $t_{d(off)}$ $I_D \cong 5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega$ 1122Fall Time t_f 816Turn-On Delay Time $t_{d(on)}$ $V_{DD} = 15 \ V, \ R_L = 3 \ \Omega$ 918Rise Time t_r $V_{DD} = 15 \ V, \ R_L = 3 \ \Omega$ 918Turn-Off Delay Time $t_{d(off)}$ $I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega$ 918Turn-Off Delay Time $t_d(off)$ $I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega$ 91020Fall Time t_f $I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega$ 1020Drain-Source Body Diode Characteristics $T_C = 25 \ ^{\circ}C$ 2.25APulse Diode Forward Current I_S $T_C = 25 \ ^{\circ}C$ 2.25ABody Diode Voltage V_{SD} $I_S = 2 \ A, \ V_{GS} = 0 \ V$ 0.81.2VBody Diode Reverse Recovery Time t_{rr} $I_F = 5 \ A, \ dI/dt = 100 \ A/\mu_S, \ T_I = 25 \ ^{\circ}C$ 48	Gate Resistance	Rg	f = 1 MHz	0.8	4.3	8.6	Ω		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Turn-On Delay Time	t _{d(on)}			12	24			
$\begin{tabular}{ c c c c c c } \hline Fall Time & t_f & & & & & & & & & & & & & & & & & & &$	Rise Time	t _r			55	100			
$\begin{tabular}{ c c c c c c c } \hline Turn-On Delay Time & t_{d(on)} & t_r & V_{DD} = 15 \ V, \ R_L = 3 \ \Omega & 9 & 18 \\ \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 3 \ \Omega & 9 & 18 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline Ball Time & t_r & 6 & 12 \\ \hline \hline Drain-Source Body Diode Characteristics & & & & & & & & & & & & & & & & & & &$	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 5$ A, V_{GEN} = 4.5 V, R_g = 1 Ω		11	22			
$\begin{tabular}{ c c c c c c } \hline Turn-On Delay Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Fall Time	t _f			8	16	nc		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			4	8	115		
Fall Time t_f 612Fall Time t_f 612Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode Current I_S $T_C = 25 ^{\circ}C$ 2.25Pulse Diode Forward Current I_SM $I_S = 2 A, V_{GS} = 0 ^{\circ}V$ 0.81.2Body Diode Voltage V_{SD} $I_S = 2 A, V_{GS} = 0 ^{\circ}V$ 0.81.2VBody Diode Reverse Recovery Time t_{rr} $I_F = 5 A, dI/dt = 100 ^{\circ}A/\mus, T_J = 25 ^{\circ}C$ 48nC	Rise Time	t _r	V_{DD} = 15 V, R_L = 3 Ω		9	18			
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIs $T_C = 25 \text{ °C}$ 2.25APulse Diode Forward CurrentIsm24244Body Diode VoltageVSDIs = 2 A, VGS = 0 V0.81.2VBody Diode Reverse Recovery Time t_{rr} $I_F = 5 A$, dl/dt = 100 A/µs, $T_A = 25 \text{ °C}$ 1120ns	Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong \text{5}$ A, V_GEN = 10 V, R_g = 1 Ω		10	20			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	t _f			6	12			
Pulse Diode Forward CurrentI I SMI SMI SM24ABody Diode VoltageV SDI S FI S SDI S S S S0.81.2VBody Diode Reverse Recovery Timetrr trr1120nsBody Diode Reverse Recovery ChargeQrrI F SI S S S10A	Drain-Source Body Diode Characteristics								
Pulse Diode Forward CurrentI I SMI SM24Body Diode VoltageV SDI S I FI S S S0.81.2V VBody Diode Reverse Recovery Time t_{rr} 1120nsBody Diode Reverse Recovery ChargeQ rrI I F5 A, dl/dt = 100 A/µs, T, I = 25 °C48nc	Continuous Source-Drain Diode Current	۱ _S	T _C = 25 °C			2.25	Δ		
Body Diode Reverse Recovery Time t_{rr} 11 20 ns Body Diode Reverse Recovery Charge Q_{rr} $I_F = 5 \text{ A}$, $dI/dt = 100 \text{ A/µs}$, $T_I = 25 \text{ °C}$ 4 8 nC	Pulse Diode Forward Current					24	7		
Body Diode Reverse Recovery Charge Q_{rr} $I_F = 5 A$, $dI/dt = 100 A/\mu s$, $T_J = 25 °C$ 4 8 nC	Body Diode Voltage	V _{SD}	$I_{S} = 2 \text{ A}, V_{GS} = 0 \text{ V}$		0.8	1.2	V		
$I_{\rm F} = 5$ A, dl/dt = 100 A/µs, $I_{-1} = 25$ °C	Body Diode Reverse Recovery Time	t _{rr}			11	20	ns		
	Body Diode Reverse Recovery Charge	Q _{rr}	l= = 5 A dl/dt = 100 Δ/με Τ. = 25 °C		4	8	nC		
	Reverse Recovery Fall Time	t _a	$r_{\rm F} = 0.7$, and $= 100.7$ (μ s, $r_{\rm J} = 20.0$		7				
Reverse Recovery Rise Time tb	Reverse Recovery Rise Time	t _b			4		ns		

Notes:

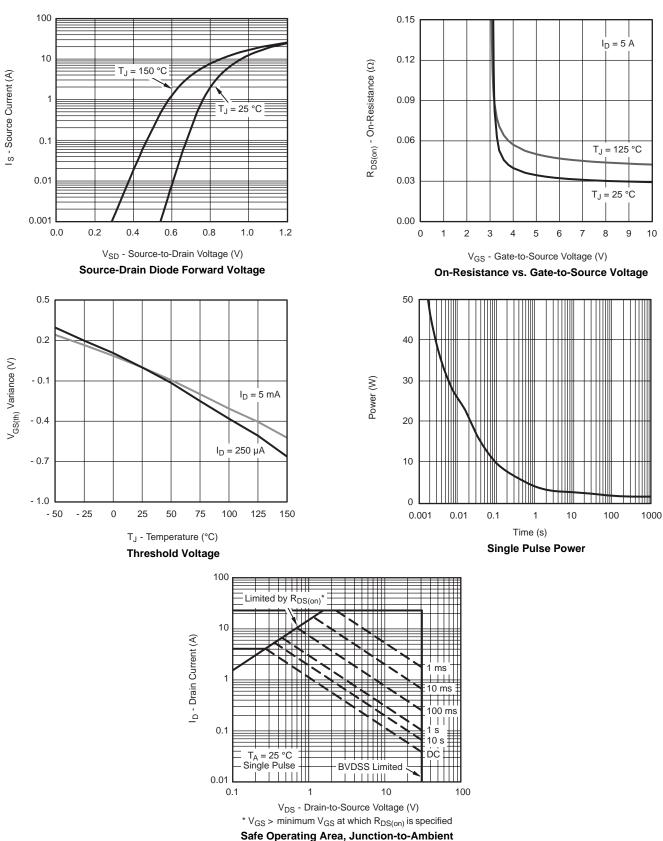
a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %

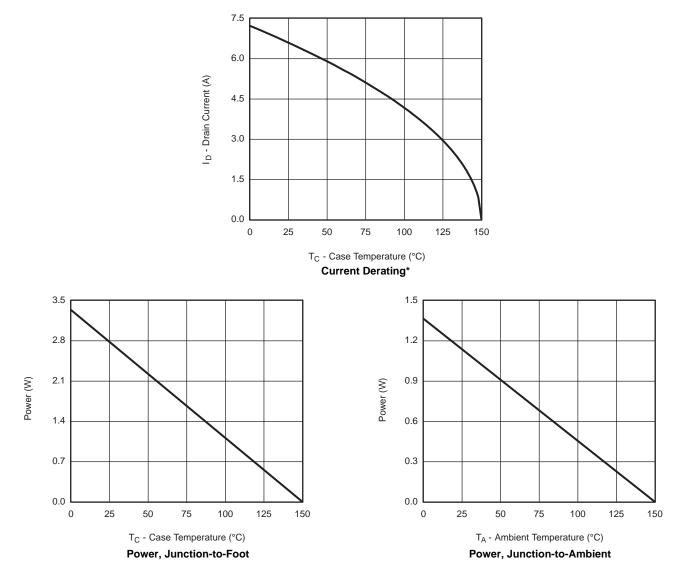
b. Guaranteed by design, not subject to production testing.

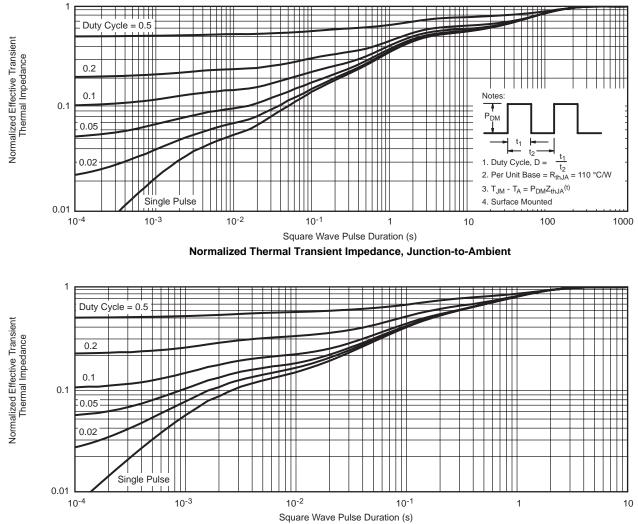
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


semi

ww.VBsemi.com

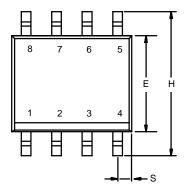

5

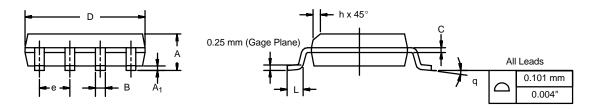



TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

* The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

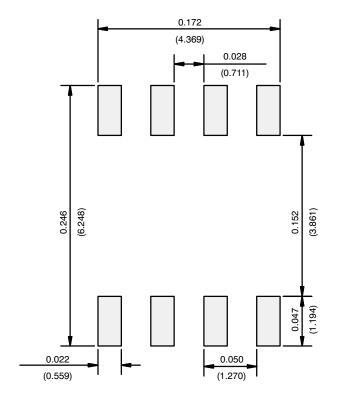
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted




Normalized Thermal Transient Impedance, Junction-to-Foot

SOIC (NARROW): 8-LEAD

JEDEC Part Number: MS-012



	MILLIMETERS		INC	HES		
DIM	Min	Max	Min	Max		
A	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
E	3.80	4.00	0.150	0.157		
е	1.27	BSC	0.050) BSC		
н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498						

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.