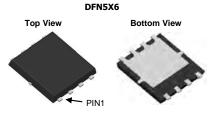
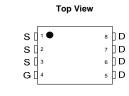
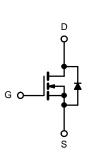
SI7658DP-T1-GE3-VB Datasheet N-Channel 30 V (D-S) MOSFET


PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^{a, e}	Q _g (Typ.)			
30	0.0018 at V _{GS} = 10 V	160	82 nC			
- 50	0.0025 at V _{GS} = 4.5 V	130	02 110			


FEATURES


- Trench Power MOSFET
- 100 % R_g and UIS Tested

APPLICATIONS

- OR-ing
- Server ٠

RoHS COMPLIANT

N-Channel MOSFET

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	30	V		
Gate-Source Voltage	V _{GS} ± 20		V		
	T _C = 25 °C		160 ^{a, e}		
Continuous Drain Current (T _J = 175 °C)	T _C = 70 °C		90 ^e		
Continuous Drain Current (1) = 175 C)	T _A = 25 °C	I _D	33 ^{b, c}	A	
	T _A = 70 °C		29.8 ^{b, c}		
Pulsed Drain Current	I _{DM}	300	-		
Avalanche Current Pulse	L = 0.1 mH	I _{AS}	36		
Single Pulse Avalanche Energy		E _{AS}	64.8	mJ	
Continuous Source-Drain Diode Current	T _C = 25 °C	I _S	90 ^{a, e}	A	
Continuous Source-Drain Diode Current	T _A = 25 °C	'S	3.13 ^{b, c}		
	T _C = 25 °C		250 ^a		
	T _C = 70 °C	PD	175	w	
Maximum Power Dissipation	T _A = 25 °C	FD	3.75 ^{b, c}	VV	
	T _A = 70 °C		2.63 ^{b, c}		
Operating Junction and Storage Temperature R	T _J , T _{stg}	- 55 to 175	°C		

THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^{b, d}	$t \le 10 \text{ s}$	R _{thJA}	R _{thJA} 32 40		°C/W		
Maximum Junction-to-Case	Steady State	R _{thJC}	0.5	0.6	°C/W		

Notes:

a. Based on $T_C = 25 \text{ °C}$. b. Surface mounted on 1" x 1" FR4 board.

c. t = 10 s.

d. Maximum under steady state conditions is 90 °C/W.

e. Calculated based on maximum junction temperature. Package limitation current is 90 A.

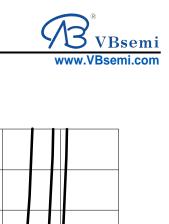
1

Bsemi

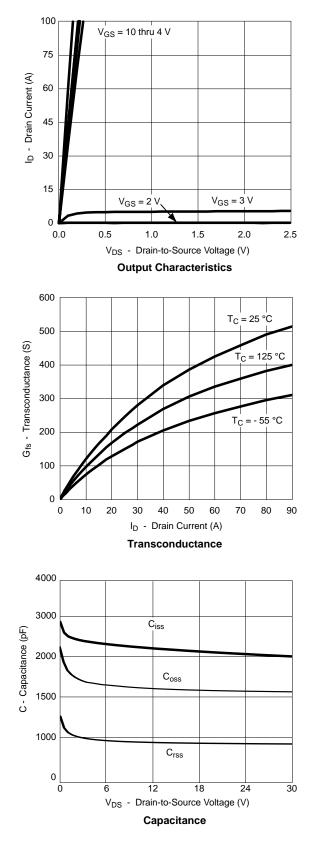
www.VBsemi.com

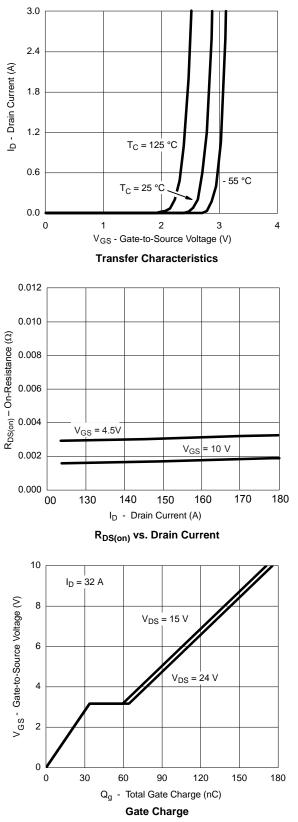
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$										
	SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Conditions	Min .	Тур.	Max.	Unit			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Breakdown Voltage	V _{DS}	V_{GS} = 0 V, I_D = 250 μ A	30			V			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	L – 250 u A		35		m\//8C			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	η - 200 μΛ		- 7.5		IIIV/ C			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	1.5		2.5	V			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 V$, $V_{GS} = \pm 20 V$			± 100	nA			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zara Cata Valtaga Drain Current	1	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$			1	μA			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gale voltage Drain Current	'DSS	V_{DS} = 30 V, V_{GS} = 0 V, T_{J} = 55 °C			10				
$\begin{array}{ c c c c c c } \hline Drain-Source On-State Resistance^3 & R_{DS(on)} & V_{GS} = 4.5 \ V, \ I_p = 29 \ A & 0.0025 & \Omega \\ \hline Forward Transconductance^3 & g_{IS} & V_{DS} = 15 \ V, \ I_p = 32 \ A & 160 & S \\ \hline Dynamic^b & & & & & & & & & & & & & & & & & & &$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	90			А			
$ \begin{array}{ c c c c c } \hline V_{GS} = 4.5 \ V, \ V_{GS} = 29 \ A \\ \hline 0.0025 \\ \hline \\ $		D	V _{GS} = 10 V, I _D = 32 A		0.0018		0			
$ \begin{array}{ c c c c c } \hline \textbf{Dynamic}^{b} & & & & & & & & & & & & & & & & & & &$	Drain-Source On-State Resistance	∿DS(on)	V_{GS} = 4.5 V, I _D = 29 A		0.0025		Ω			
$ \begin{array}{c c c c c c c c } \mbox{Input Capacitance} & C_{1SS} & V_{DS} = 12.5 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & 1725 & 9900 \\ \mbox{Output Capacitance} & C_{rSS} & V_{DS} = 12.5 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & 1725 & 9700 \\ \mbox{Input Capacitance} & C_{rSS} & V_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ I_{D} = 32 \ A & 833 & 832 & $	Forward Transconductance ^a g _{fs}		V _{DS} = 15 V, I _D = 32 A		160		S			
$ \begin{array}{ c c c c c } \hline \mbox{Output Capacitance} & C_{OSS} & V_{DS} = 12.5 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & 1725 & pF \\ \hline \mbox{Reverse Transfer Capacitance} & C_{rss} & V_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ l_{D} = 32 \ A & 83 \\ \hline \mbox{Output Capacitance} & Q_{g} & V_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ l_{D} = 32 \ A & 83 \\ \hline \mbox{Gate Charge} & Q_{gg} & V_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ l_{D} = 29 \ A & 83 \\ \hline \mbox{Gate Prain Charge} & Q_{gd} & & & & & & & & & & & & & \\ \hline \mbox{Gate Resistance} & R_{g} & f = 1 \ MHz & 1.4 & 2.1 & \Omega \\ \hline \mbox{Gate Resistance} & R_{g} & f = 1 \ MHz & 1.4 & 2.1 & \Omega \\ \hline \mbox{Turn-On Delay Time} & t_{d(on)} & & & & & & & & & & & & \\ \hline \mbox{Rise Time} & t_{r} & V_{DD} = 15 \ V, \ R_{L} = 0.555 \ \Omega & 11 & 177 \\ \hline \mbox{Turn-On Delay Time} & t_{d(onf)} & & & & & & & & & & & & & & & \\ \hline \mbox{Turn-On Delay Time} & t_{d(onf)} & & & & & & & & & & & & & & & & & \\ \hline \mbox{Turn-On Delay Time} & t_{d(onf)} & & & & & & & & & & & & & & & & & & &$	Dynamic ^b									
$ \begin{array}{ c c c c c } \hline Reverse Transfer Capacitance & C_{rss} & & & & & & & & & & & & & & & & & & $	Input Capacitance	C _{iss}				9900				
$ \begin{array}{ c c c c c } \hline Reverse Transfer Capacitance & C_{rss} & & & & & & & & & & & & & & & & & & $	Output Capacitance	C _{oss}	V_{DS} = 12.5 V, V_{GS} = 0 V, f = 1 MHz			1725	pF			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reverse Transfer Capacitance					970				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total Gate Charge	-	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 32 A			83	nC			
$ \begin{array}{ c c c c c c } \hline Gate-Source Charge & Q_{gs} & V_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_{D} = 29 \ A & 29 \\ \hline Gate Principal Charge & Q_{gd} & & & & & & & & & & & & & & & & & & &$						82				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge	Q _{gs}	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 29 A			34				
$ \begin{array}{ c c c c c } \hline Turn-On \ Delay \ Time & \hline t_{d(on)} & \\ \hline Rise \ Time & \hline t_r & \\ \hline Turn-Off \ Delay \ Time & \hline t_{d(off)} & \\ \hline Turn-Off \ Delay \ Time & \hline t_{d(off)} & \\ \hline Turn-On \ Delay \ Time & \hline t_r & \\ \hline Turn-On \ Delay \ Time & \hline t_{d(off)} & \\ \hline Turn-On \ Delay \ Time & \hline t_{d(off)} & \\ \hline Turn-On \ Delay \ Time & \hline t_{d(off)} & \\ \hline Turn-On \ Delay \ Time & \hline t_{d(off)} & \\ \hline Turn-Off \ Delay \ Time & \hline t_r & \\ \hline Turn-Off \ Delay \ Time & \hline Trun-Off \ Delay \ Time \ Time & \hline Trun-Off \ Delay \ Time & \hline Time \ Time & \hline Tim$	Gate-Drain Charge	Q _{gd}				29				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	Rg	f = 1 MHz		1.4	2.1	Ω			
$\begin{tabular}{ c c c c c c } \hline Turn-Off Delay Time & $t_{d(off)}$ \\ \hline Fall Time & t_{f} \\ \hline Turn-On Delay Time & $t_{d(on)}$ \\ \hline Rise Time & $t_{d(on)}$ \\ \hline Rise Time & $t_{d(on)}$ \\ \hline Turn-Off Delay Time & $t_{d(off)}$ \\ \hline Turn-Off Delay Time & t_{f} \\ \hline Drain-Source Body Diode Characteristics \\ \hline Continuous Source-Drain Diode Current & l_S & $T_C = 25\ ^{\circ}C$ & 100 \\ \hline Pulse Diode Forward Current^a & l_{SM} \\ \hline \end{tabular}$	Turn-On Delay Time	t _{d(on)}			18	27				
$ \begin{array}{c c c c c c c } \hline Fall Time & t_f & & & & & & & & & & & & & & & & & & &$	Rise Time	t _r	V_{DD} = 15 V, R_{L} = 0.555 Ω		11	17				
$\begin{tabular}{ c c c c c c c c c c c } \hline Turn-On Delay Time & $t_{d(on)}$ \\ \hline Turn-On Delay Time & t_r \\ \hline Turn-Off Delay Time & $t_d(off)$ \\ \hline Turn-Off Delay Time & $t_{d(off)}$ \\ \hline Turn-Off Delay Time & t_f \\ \hline Turn-Off Delay Time & t_f \\ \hline Train-Source Body Diode Characteristics \\ \hline Drain-Source Body Diode Characteristics \\ \hline Continuous Source-Drain Diode Current & I_S & $T_C = 25 \ C$ & 100 \\ \hline Pulse Diode Forward Current^a & I_{SM} \\ \hline \end{tabular}$	Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}{\cong}27$ A, V_GEN = 10 V, R_g = 1 Ω		70	105				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Fall Time	t _f			10	15				
$\begin{tabular}{ c c c c c } \hline Turn-Off Delay Time & t_{d(off)} & I_D \cong 24 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega & 55 & 83 \\ \hline Fall Time & t_f & 12 & 18 \\ \hline \hline Drain-Source Body Diode Characteristics & & & & & & \\ \hline Drain-Source-Drain Diode Current & I_S & T_C = 25 \ ^{\circ}C & & & 100 & \\ \hline Pulse Diode Forward Current^a & I_{SM} & & & & & & & & & & \\ \hline \end{array}$	Turn-On Delay Time	t _{d(on)}			55	83	115			
Fall Time t_f 1218Drain-Source Body Diode CharacteristicsTC = 25 °C100APulse Diode Forward Current ^a I_{SM} 200200	Rise Time	t _r	V_{DD} = 15 V, R_L = 0.625 Ω		180	270				
Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current I_S $T_C = 25 \text{ °C}$ 100 A Pulse Diode Forward Current ^a I_{SM} 200 A	Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong$ 24 A, V_GEN = 4.5 V, R_g = 1 Ω		55	83				
Continuous Source-Drain Diode CurrentI ST C = 25 °C100Pulse Diode Forward Current ^a I SM200	Fall Time	t _f			12	18	1			
Pulse Diode Forward Current ^a I _{SM} 200	Drain-Source Body Diode Characteristic	s								
Pulse Diode Forward Current ^a I _{SM} 200	Continuous Source-Drain Diode Current	ا _S	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$			100				
	Pulse Diode Forward Current ^a					200				
Body Diode voltage V_{SD} $I_S = 22 \text{ A}$ 0.8 1.2 V	Body Diode Voltage	V _{SD}	I _S = 22 A		0.8	1.2	V			
Body Diode Reverse Recovery Time trr 52 78	Body Diode Reverse Recovery Time	t _{rr}			52	78	ns			
Body Diode Reverse Recovery Charge Q_{rr} $I_F = 20 \text{ A}, \text{ di/dt} = 100 \text{ A/µs}, T_J = 25 ^{\circ}\text{C}$ 70.2 105 nC	Body Diode Reverse Recovery Charge	Q _{rr}	L = 20 A di/dt = 100 A/us T. = 25 °C		70.2	105	nC			
Reverse Recovery Fall Time t _a 27	Reverse Recovery Fall Time	ta	$r_{\rm F} = 20$ Å, and $= 100$ Å/µs, $r_{\rm J} = 20$ C		27		P 2			
Reverse Recovery Rise Timetb25	Reverse Recovery Rise Time	t _b	7		25		ns			

Notes:


a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Bsemi

www.VBsemi.com

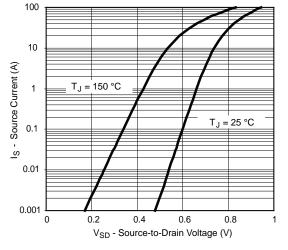
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



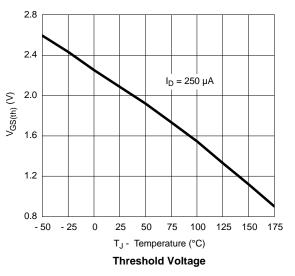
服务热线:400-655-8788

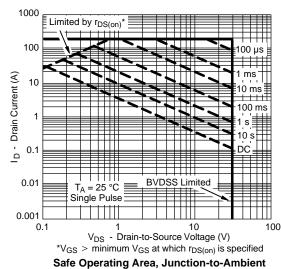
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

6


4

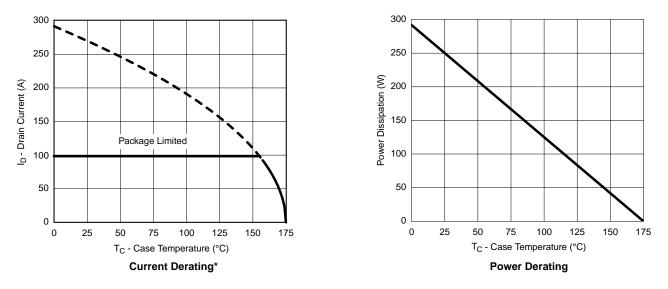
V_{GS} - Gate-to-Source Voltage (V)


R_{DS(on)} vs. V_{GS} vs. Temperature


8

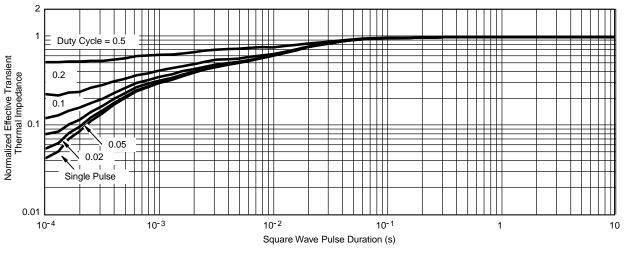
10

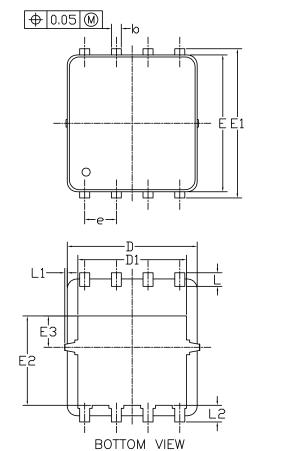
Forward Diode Voltage vs. Temperature



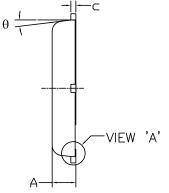
0.000

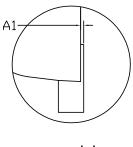
0


2

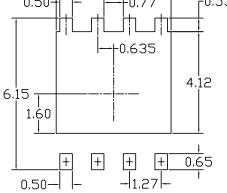

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

* The power dissipation P_D is based on $T_{J(max)}$ = 175 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.




Normalized Thermal Transient Impedance, Junction-to-Case

DFN5x6_8L_EP1_P PACKAGE OUTLIN



<u>VIEW 'A'</u> (SCALE 5:1)

.60 -0.55 0.50 -0.77

RECOMMENDED LAND PATTERN

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.85	0.95	1.00	0.033	0.037	0.039	
Al	0.00		0.05	0.000		0.002	
b	0.30	0.40	0.50	0.012	0.016	0.020	
с	0.15	0.20	0.25	0.006	0.008	0.010	
D	5.10	5.20	5.30	0.201	0.205	0.209	
D1	4.25	4.35	4.45	0.167	0.171	0.175	
E	5.45	5.55	5.65	0.215	0.219	0.222	
E1	5.95	6.05	6.15	0.234	0.238	0.242	
E2	3.525	3.625	3.725	0.139	0.143	0.147	
E3	1.175	1.275	1.375	0.046	0.050	0.054	
e	1.27 BSC			0.050 BSC			
L	0.45	0.55	0.65	0.018	0.022	0.026	
L1	0		0.15	0		0.006	
L2	0.68 REF			0.027 REF			
θ	0°		10°	0°		10°	

UNIT: mm

NOTE 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH. 2. CONTROLLING DIMENSION IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.