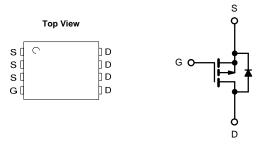
CMSA100P02-VB Datasheet

P-Channel 30-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$R_{DS(on)}(\Omega)$	I _D (A) ^a	Q _g (Typ.)		
- 30	0.004 at V _{GS} = - 10 V	- 120	130 nC		
	0.006 at V _{GS} = - 4.5 V	- 100	130110		


FEATURES

- Halogen-free
- Trench Power MOSFET
- 100 % Rg Tested

APPLICATIONS

- Notebook
 - Load Switch

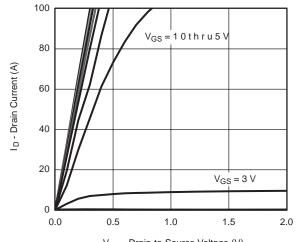
P-Channel MOSFET

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	- 30	V	
Gate-Source Voltage		V _{GS}	± 20	V	
Continuous Drain Current (T _J = 150 °C)	$T_{C} = 25 ^{\circ}\text{C}$ $T_{C} = 70 ^{\circ}\text{C}$ $T_{A} = 25 ^{\circ}\text{C}$ $T_{A} = 70 ^{\circ}\text{C}$	I _D	- 120 ^a - 100 ^a - 31.6 ^{b, c} - 25.3 ^{b, c}		
Pulsed Drain Current		I _{DM}	- 280	Α	
Continuous Source-Drain Diode Current	$T_C = 25 ^{\circ}\text{C}$ $T_A = 25 ^{\circ}\text{C}$	Is	- 80 ^a - 56 ^{b, c}		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	- 60		
Single Pulse Avalanche Energy		E _{AS}	160	mJ	
Maximum Power Dissipation	$T_{C} = 25 ^{\circ}\text{C}$ $T_{C} = 70 ^{\circ}\text{C}$ $T_{A} = 25 ^{\circ}\text{C}$ $T_{A} = 70 ^{\circ}\text{C}$	P _D	110 83 6.95 ^{b, c} 5.0 ^{b, c}	W	
Operating Junction and Storage Temperature Ra	T _J , T _{stg}	- 55 to 150	00		
Soldering Recommendations (Peak Temperature	- 5.9	260	°C		

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R _{thJA}	15	20	°C/W	
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	0.9	1.2]	

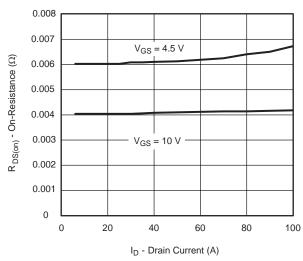
Notes:

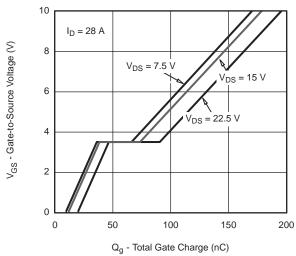
- a. Package limited.
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 10 s.
- d. The DFN5x6 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under Steady State conditions is 54 °C/W.


Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static					L		
Drain-Source Breakdown Voltage	V_{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	- 30			V	
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	J 250A		- 31		mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_{J}$	I _D = - 250 μA		6.5			
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	- 1.0		- 3.0	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}$			- 1	- 1 - 10 μΑ	
		V _{DS} = - 30 V, V _{GS} = 0 V, T _J = 55 °C			- 10		
On-State Drain Current ^a	I _{D(on)}	V _{DS} = - 5 V, V _{GS} = - 10 V	- 30			Α	
Drain-Source On-State Resistance ^a		V _{GS} = - 10 V, I _D = - 20 A		0.004		†	
	R _{DS(on)}	V _{GS} = - 4.5 V, I _D = - 15 A		0.006		Ω	
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 15 V, I _D = - 20 A		97		S	
Dynamic ^b				1			
Input Capacitance	C _{iss}			7050		pF	
Output Capacitance	C _{oss}	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		1375			
Reverse Transfer Capacitance	C _{rss}			1215			
Total Gate Charge		V _{DS} = - 15 V, V _{GS} = - 10 V, I _D = - 20 A		130	250	nC	
		20 00 2		78	130		
Gate-Source Charge	Q_{gs}	$V_{DS} = -15 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -20 \text{ A}$		29			
Gate-Drain Charge	Q_{gd}			37			
Gate Resistance	R _g	f = 1 MHz		1.9		Ω	
Turn-On Delay Time	t _{d(on)}			25	40	ns	
Rise Time	t _r	V_{DD} = - 15 V, R_L = 15 Ω		15	30		
Turn-Off Delay Time	t _{d(off)}	$I_D\cong$ - 1.0 A, V_{GEN} = - 10 V, R_g = 1 Ω		110	170		
Fall Time	t _f			30	50		
Turn-On Delay Time	t _{d(on)}			110	170		
Rise Time	t _r	V_{DD} = - 15 V, R_L = 15 Ω		100	150		
Turn-Off Delay Time	t _{d(off)}	$I_D\cong$ - 1.0 A, V_{GEN} = - 4.5 V, R_g = 1 Ω		100	150		
Fall Time	t _f			50	75		
Drain-Source Body Diode Characteristi	cs			1	<u>I</u>		
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			100	^	
Pulse Diode Forward Current ^a	I _{SM}				120	A	
Body Diode Voltage	V _{SD}	I _S = - 5 A		- 0.54	- 1.1	V	
Body Diode Reverse Recovery Time	t _{rr}			50	100	ns	
Body Diode Reverse Recovery Charge	Q _{rr}	I _F = 3.5 A, dl/dt = 100 A/μs, T _J = 25 °C		65	130	nC	
Reverse Recovery Fall Time	t _a			26			
Reverse Recovery Rise Time	t _b			24		ns	

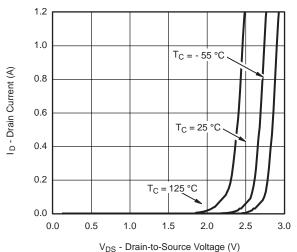
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$ b. Guaranteed by design, not subject to production testing.

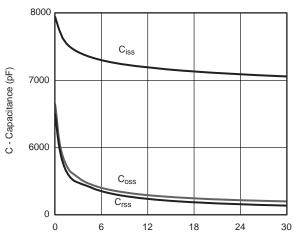
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


服务热线:400-655-8788

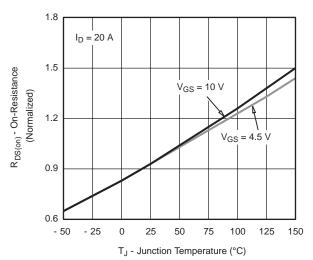


 $V_{\mbox{\scriptsize DS}}$ - Drain-to-Source Voltage (V)

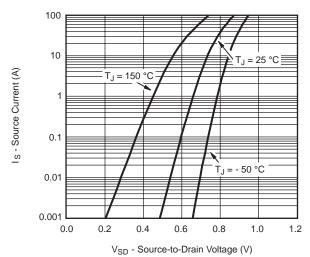

Output Characteristics


On-Resistance vs. Drain Current and Gate Voltage

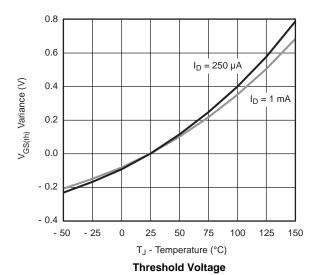
Gate Charge

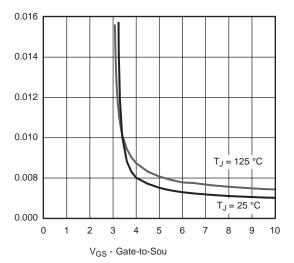


Transfer Characteristics



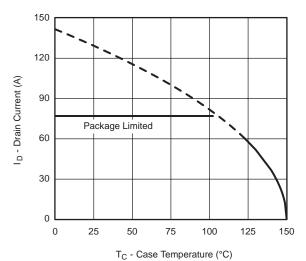
 V_{DS} - Drain-to-Source Voltage (V)

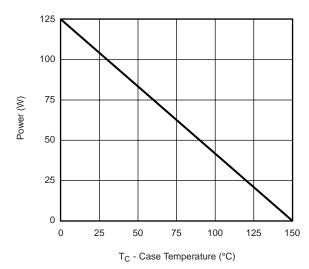

Capacitance

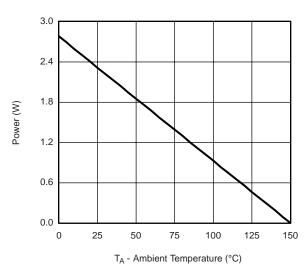


On-Resistance vs. Junction Temperature

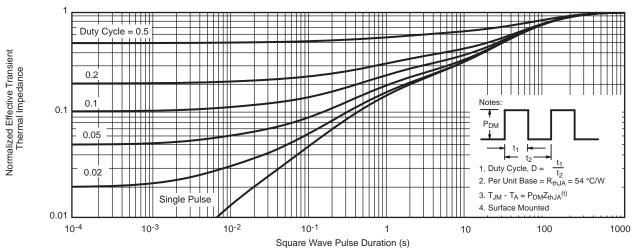
Source-Drain Diode Forward Voltage

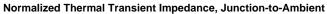


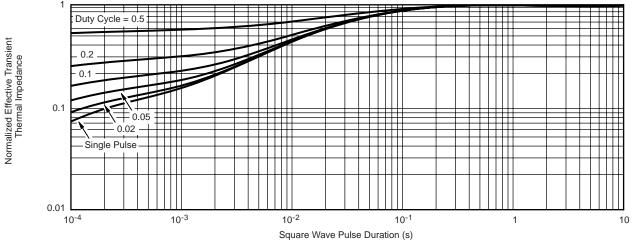

On-Resistance vs. Gate-to-Source Voltage


Single Pulse Power, Junction-to-Ambient

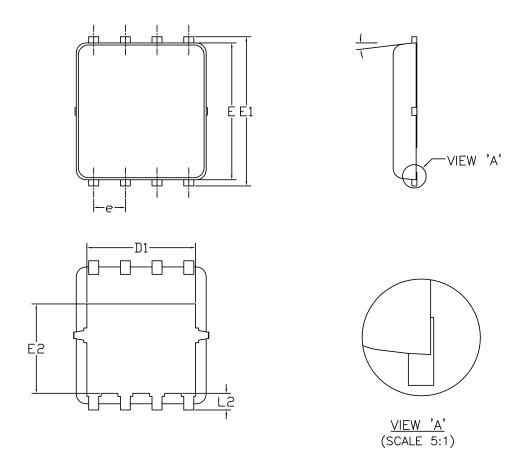
Current Derating*

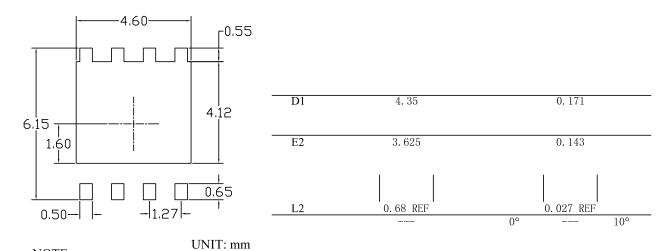

Power, Junction-to-Case


Power, Junction-to-Ambient


服务热线:400-655-8788

 $^{^*}$ The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.





Normalized Thermal Transient Impedance, Junction-to-Case

NOTE
1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.

MOLD FLASH AT THE NON-LEAD SIDES

Disclaimer

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.