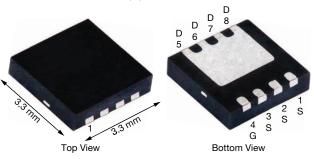


ROHS COMPLIANT

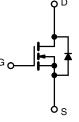

HALOGEN

N7458-VB Datasheet

N-Channel 250 V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	250				
$R_{DS(on)}$ (Ω) at V_{GS} = 10 V	0.				
$R_{DS(on)}$ (Ω) at V_{GS} = 7.5 V	1250.				
Q _g typ. (nC)	135				
I _D (A)	10.3 f				
Configuration	Single				

DFN 3x3 EP



FEATURES

- Trench power MOSFET
- Low thermal resistance package
- 100 % R_g and UIS tested

APPLICATIONS

- Primary side switch
- Synchronous rectification
- DC/DC converter
- Lighting
- Industrial

N-Channel MOSFET

PARAMETER		SYMBOL	LIMIT	UNIT
Drain-source voltage		V _{DS}	250	V
Gate-source voltage		V _{GS}	± 20	v
Continuous drain current (T _J = 150 °C)	T _C = 25 °C		10.3	
	T _C = 70 °C		6.8	
	T _A = 25 °C	I _D	3.7 ^{a, b}	
	T _A = 70 °C	1	3 a, b	
Pulsed drain current (t = 100 µs)		I _{DM}	25	A
Continuous source-drain diode current	T _C = 25 °C		45	
	T _A = 25 °C	I _S	4.2 ^{a, b}	
Single pulse avalanche current	L = 0.1 mH	I _{AS}	12	
Single pulse avalanche energy	L = 0.1 MH	E _{AS}	7.2	mJ
	T _C = 25 °C		24.2	
Maximum power dissipation	T _C = 70 °C		14.8	w
	T _A = 25 °C	P _D	3.5 ^{a, b}	vv
	T _A = 70 °C		2.2 ^{a, b}	
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +150	
Soldering recommendations (peak temperature) a			260	-0

THERMAL RESISTANCE RATINGS								
PARAMETER	SYMBOL	TYPICAL	MAXIMUM	UNIT				
Maximum junction-to-ambient ^a	t ≤ 10 s	R _{thJA}	20	25	°C/W			
Maximum junction-to-case (drain)	Steady state	R _{thJC}	1.8	2.3	C/W			

Notes

a. Surface mounted on 1" x 1" FR4 board

- c. The DFN3x3 package is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection
- d. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components
- e. Maximum under steady state conditions is 65 °C/W

f. $T_C = 25 \ ^{\circ}C$

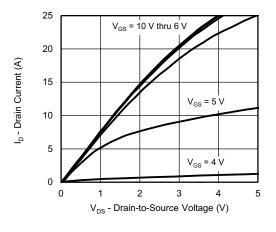
b. t = 10 s

N7458-VB

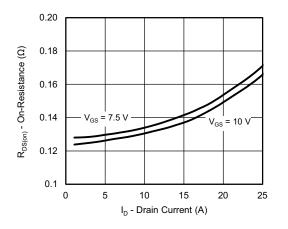
			۷	vww.VB	semi.co
unless otherv	vise noted)				
SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DS}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$	250	-	-	V
$\Delta V_{DS}/T_{J}$	I= = 250 µA	-	254	-	mV/°C
$\Delta V_{GS(th)}/T_J$	$I_D = 250 \ \mu A$	-	-6.9	-	
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	-	4	V
I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 20 V$	-	-	100	nA
I _{DSS} -	$V_{DS} = 250 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	1	1 10 μΑ
	V_{DS} = 250 V, V_{GS} = 0 V, T_{J} = 70 $^{\circ}C$	-	-	10	
I _{D(on)}	$V_{DS} \geq 5 \text{ V}, V_{GS} = 10 \text{ V}$	10	-	-	А
R _{DS(on)} -	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 3.7 \text{ A}$	-	0.125	-	0
	$V_{GS} = 7.5 \text{ V}, \text{ I}_{D} = 3.5 \text{ A}$	-	0.135	-	Ω
9 _{fs}	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 3.7 \text{ A}$	-	10	-	S
C _{iss}		-	600	-	
C _{oss}	V _{DS} = 125 V, V _{GS} = 0 V, f = 1 MHz	-	65	-	pF
	SYMBOL VDS ΔVDS/TJ ΔVGS(th)/TJ VGS(th) IGSS IDSS ID(on) RDS(on) Gfs	$\begin{tabular}{ c c c c c } \hline V_{DS} & V_{GS} = 0 \ V, \ I_D = 250 \ \mu A \\ \hline \Delta V_{DS}/T_J & I_D = 250 \ \mu A \\ \hline \Delta V_{GS(th)}/T_J & V_{DS} = V_{GS}, \ I_D = 250 \ \mu A \\ \hline V_{GS}(th) & V_{DS} = V_{GS}, \ I_D = 250 \ \mu A \\ \hline I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V \\ \hline I_{DSS} & V_{DS} = 250 \ V, \ V_{GS} = 0 \ V, \ V_{DS} = 250 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 250 \ V, \ V_{GS} = 0 \ V, \ T_J = 70 \ ^\circ C \\ \hline I_{D(on)} & V_{DS} \ge 5 \ V, \ V_{GS} = 10 \ V \\ \hline R_{DS(on)} & V_{GS} = 10 \ V, \ I_D = 3.7 \ A \\ \hline C_{iss} & \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline SYMBOL & TEST CONDITIONS & MIN. \\ \hline V_{DS} & $V_{GS} = 0 V, $I_{D} = 250 μA & 250 \\ \hline $\Delta V_{DS}/T_J$ & $I_{D} = 250 μA & 2 \\ \hline $\Delta V_{GS(th)}/T_J$ & $V_{DS} = V_{GS}, $I_{D} = 250 μA & 2 \\ \hline I_{GSS} & $V_{DS} = 0 V, $V_{GS} = $20 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 0 V & $-$ \\ \hline $V_{DS} = 250 V, $V_{GS} = 10 V & 10 \\ \hline $V_{DS} = 250 V, $V_{GS} = 10 V & 10 \\ \hline $V_{DS} = 10 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $C_{iss} $ & $-$ \\ \hline $C_{iss} $ & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $I_{D} = 3.7 A & $-$ \\ \hline $V_{DS} = 15 V, $V_{DS} = 15 V, $V_{DS} = 10 V & V_{D	$\begin{tabular}{ c c c c c } \hline Unless otherwise noted) \\ \hline SYMBOL & TEST CONDITIONS & MIN. & TYP. \\ \hline V_{DS} & V_{GS} = 0 V, I_D = 250 \ \mu A & 250 & - \\ \hline \Delta V_{DS}/T_J & I_D = 250 \ \mu A & - & 254 \\ \hline \Delta V_{GS(th)}/T_J & V_{DS} = V_{GS}, I_D = 250 \ \mu A & 2 & - \\ \hline I_{GSS} & V_{DS} = 0 V, V_{GS} = \pm 20 \ V & - & - \\ \hline I_{DSS} & V_{DS} = 250 \ V, V_{GS} = 0 V & - & - \\ \hline V_{DS} = 250 \ V, V_{GS} = 0 \ V, T_J = 70 \ ^{\circ}C & - & - \\ \hline I_{D(on)} & V_{DS} \ge 5 \ V, V_{GS} = 10 \ V & 10 & - \\ \hline R_{DS(on)} & V_{GS} = 15 \ V, I_D = 3.7 \ A & - & 0.125 \\ \hline V_{DS} = 15 \ V, I_D = 3.7 \ A & - & 10 \\ \hline \end{tabular}$	$\begin{array}{ c c c c c c } \hline SYMBOL & TEST CONDITIONS & MIN. & TYP. & MAX. \\ \hline \\ \hline \\ V_{DS} & V_{GS} = 0 \ V, \ I_D = 250 \ \mu A & 250 & - & - \\ \hline \\ \Delta V_{DS}/T_J & I_D = 250 \ \mu A & - & 254 & - \\ \hline \\ \Delta V_{GS(th)}/T_J & V_{DS} = V_{GS}, \ I_D = 250 \ \mu A & 2 & - & 4 \\ \hline \\ I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = \pm 20 \ V & - & - & 100 \\ \hline \\ I_{DSS} & V_{DS} = 250 \ V, \ V_{GS} = 0 \ V & - & - & 1 \\ \hline \\ V_{DS} = 250 \ V, \ V_{GS} = 0 \ V & - & - & 10 \\ \hline \\ I_{D(on)} & V_{DS} \geq 5 \ V, \ V_{GS} = 10 \ V & 10 & - & - \\ \hline \\ R_{DS(on)} & V_{DS} = 15 \ V, \ I_D = 3.7 \ A & - & 0.125 & - \\ \hline \\ V_{GS} = 15 \ V, \ I_D = 3.7 \ A & - & 10 & - \\ \hline \\ \hline \\ \hline \\ \hline \\ C_{iss} & & - & 600 & - \\ \hline \end{array}$

		GG ; B				
Forward transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 3.7 A	-	10	-	S
Dynamic ^b		·		•	•	•
Input capacitance	C _{iss}	V _{DS} = 125 V, V _{GS} = 0 V, f = 1 MHz	-	600	-	pF
Output capacitance	Coss		-	65	-	
Reverse transfer capacitance	C _{rss}		-	2	-	
Total gate charge	0	$V_{DS} = 125 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 2 \text{ A}$	-	10.9	16.5	
Total gate charge	Qg		-	8.6	12.9	nC
Gate-source charge	Q _{gs}	$V_{DS} = 125 \text{ V}, V_{GS} = 7.5 \text{ V}, I_D = 2 \text{ A}$	-	2.7	-	
Gate-drain charge	Q _{gd}		-	2.9	-	
Output charge	Q _{oss}	$V_{DS} = 125 \text{ V}, V_{GS} = 0 \text{ V}$	-	30	45	
Gate resistance	Rg	f = 1 MHz	0.5	2.3	4.6	Ω
Turn-on delay time	t _{d(on)}		-	8	16	
Rise time	t _r	V_{DD} = 125 V, R _L = 41.7 Ω, I _D \cong 3 A,	-	22	35	
Turn-off delay time	t _{d(off)}	V_{GEN} = 10 V, R_g = 1 Ω	-	18	30	
Fall time	t _f		-	22	35	
Turn-on delay time	t _{d(on)}		-	10	20	ns
Rise time	t _r	V_{DD} = 125 V, R_L = 41.7 Ω , $I_D \cong$ 3 A,	-	22	40	
Turn-off delay time	t _{d(off)}	V_{GEN} = 7.5 V, R_g = 1 Ω	-	18	30	
Fall time	t _f		-	25	50	
Drain-Source Body Diode Characteristic	cs					
Continuous source-drain diode current	I _S	T _C = 25 °C	-	-	45	A
Pulse diode forward current	I _{SM}		-	-	25	A
Body diode voltage	V _{SD}	$I_{S} = 3.4 \text{ A}, V_{GS} = 0 \text{ V}$	-	0.8	1.2	V
Body diode reverse recovery time	t _{rr}	I _F = 3.4 A, di/dt = 100 A/μs, T _J = 25 °C	-	100	150	ns
Body diode reverse recovery charge	Q _{rr}		-	356	550	nC
Reverse recovery fall time	ta		-	65	-	200
Reverse recovery rise time	t _b]	-	35	-	ns

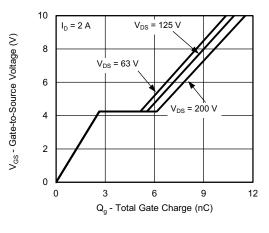
Notes

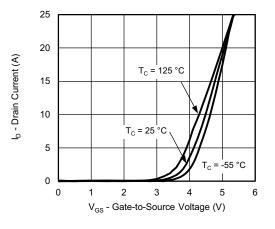

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %

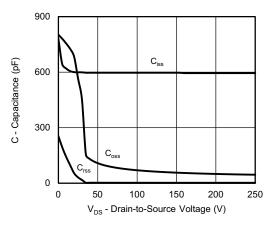
b. Guaranteed by design, not subject to production testing

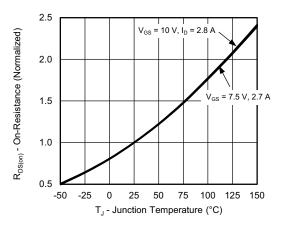

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Bsemi

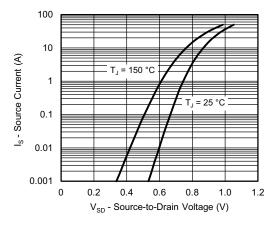



Output Characteristics

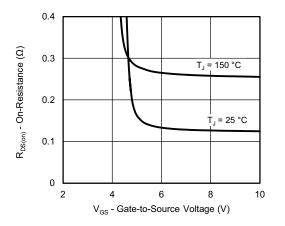

On-Resistance vs. Drain Current and Gate Voltage


Gate Charge

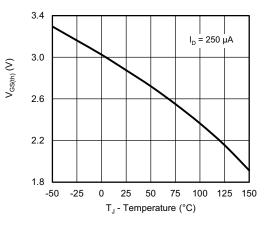
Transfer Characteristics

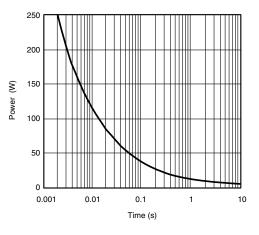


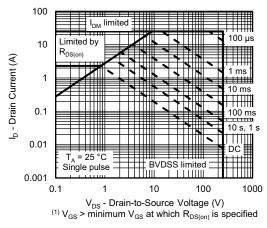
Capacitance



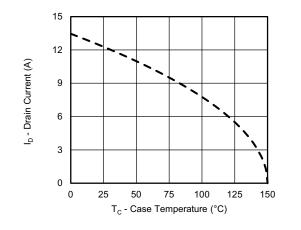
On-Resistance vs. Junction Temperature



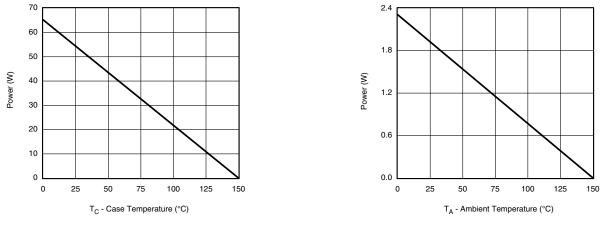

Source-Drain Diode Forward Voltage


On-Resistance vs. Gate-to-Source Voltage

Threshold Voltage

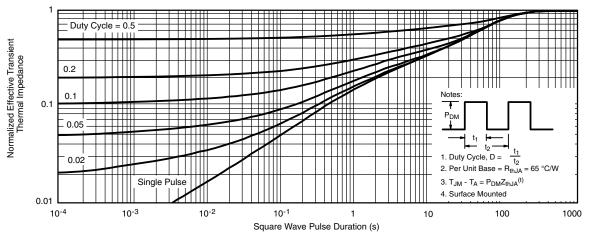


Single Pulse Power, Junction-to-Ambient

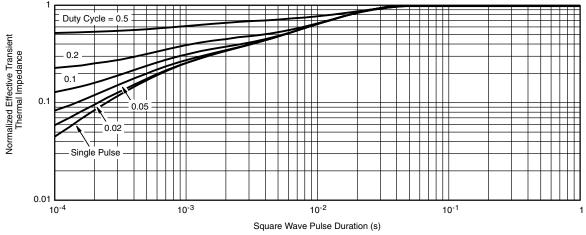


Safe Operating Area, Junction-to-Ambient

Current Derating ^a



Power, Junction-to-Case


Power, Junction-to-Ambient

Note

a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Foot

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.